\(\overline{1x57y}\)sao cho \(\overline{1x57y}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

Có: \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)  (dấu bằng xảy ra khi và chỉ khi x=y)

Đặt: \(\hept{\begin{cases}abc=x\\def=y\end{cases}}\)Như vậy x+y đạt GTLN khia và chỉ khi x=y do x không ràng buộc khác y

Thật vậy với x=y thì\(abcdef-defabc=0\)chia hết cho 2010

Vì x,y là 2 số tự nhiên có 3 chữ số khác nhau thức không ràng buộc x khác y

Nên: \(x=y=987\)

Max x+y=\(\sqrt{4\cdot987^2}=1974\)

Không viết đúng không

:v

1 tháng 7 2019

Mình xem đáp án là 1328 với lại mình gõ nhầm;

abcdef là 2 số tự nhiên có 3 chữ số khác nhau. Biết abcdef - defabc chia hết cho 2010. Tìm giá trị lớn nhất của abc + def .

12 tháng 10 2017

a)

\(\overline{5\circledast8}⋮3khi\left(5+\circledast+8\right)⋮3\Rightarrow\left(13+\circledast\right)⋮3\)

\(\Rightarrow\circledast\) = 2 hoặc \(\circledast\) = 5 hoặc \(\circledast\) = 8.

Vậy chữ số thay cho \(\circledast\) là 2 hoặc 5 hoặc 8.

b)

\(\overline{6\circledast3}⋮9khi\left(6+3+\circledast\right)⋮9\Rightarrow\left(9+\circledast\right)⋮9\)

\(\Rightarrow\circledast\) = 0 hoặc \(\circledast\) = 9.

Vậy chữ số thay \(\circledast\) là 0 hoặc 9

c)

\(\overline{43\circledast}⋮3khi\left(4+3+\circledast\right)⋮3\Rightarrow\circledast=2\text{hoặc}\circledast=5\text{hoặc}\circledast=8\left(1\right)\)

\(\overline{43\circledast}⋮5khi\circledast=0\text{hoặc}\circledast5\)

\(\circledast\) phải thỏa mãn (1) và ( 2) nên \(\circledast\) = 5.

d)

\(\overline{\circledast81\circledast}⋮5\) nên dấu \(\circledast\) ở hàng đơn vị phải bằng 0 hoặc 5

\(\overline{\circledast81\circledast}⋮2\) nên dấu \(\circledast\) ở hàng đơn vị phải bằng 0 ( vì 5 là số lẻ ) . Thay vào ta được số : \(\overline{\circledast810}\)

Để \(\overline{\circledast810}⋮9\) thì \(\left(\circledast+8+1+0\right)⋮9=\left(\circledast+9\right)\Rightarrow\circledast=0\text{hoặc}\circledast=9\)

\(\circledast\) lại là số ở hàng nghìn (là số đầu tiên) nên \(\circledast\) ≠ 0. Do đó \(\circledast\) = 9

Vậy ta được số 9810

15 tháng 4 2017

a)5

b)9

c)5

d)90

25 tháng 10 2016

5, 87ab=8784

27 tháng 12 2020

b=5

a=5

5 tháng 10 2016

a) Vì số chẵn là số chia hết cho 2 nên ta có:
\(\overline{abc}=\overline{ab}+\overline{bc}+\overline{ca}+\overline{ac}+\overline{cb}+\overline{ba}\)

\(=10a+b+10b+c+10c+a+10a+c+10c+b+10b+a\)

\(=\left(10a+10a+a+a\right)+\left(10b+10b+b+b\right)+\left(10c+10c+c+c\right)\)

\(=22a+22b+22c\)

\(=22\left(a+b+c\right)\)

Vì \(22.\left(a+b+c\right)⋮2\) nên \(\overline{abc}\) là số chẵn ( đpcm )

Vì \(22.\left(a+b+c\right)⋮11\) nên \(\overline{abc}⋮11\) ( đpcm )

 

 

N
19 tháng 5 2017

Bài làm :

a) Để 3*5 chia hết cho 3 . Ta có :

3*5 = 3 + ( * ) + 5 ( * N và * <10 )

3*5 = ( 3 + 5 ) + ( * )

3*5 = 8 + (*) chia hết cho 3

Vậy để 3*5 (8 + *)chia hết cho 3

Nên * {1;4;7}

b) Để 7*2 chia hết cho 9 . Ta có :

7*2 = 7 + (*) + 2 ( * N và * < 10 )

7*2 = ( 7 + 2 ) + (*)

7*2 = 9 + (*) chia

Vậy để 7*2 (9 + *) chia hết cho 9

Nên * {0;9}

c) Để *63* chia hết cho cả 2,3,5,9 .

+ Số chia hết cho 2 ; 5 thì chữ số tận cùng của nó phải là số 0

Ta có *630 chia hết cho 2,3,5,9

+ Để *630 chia hết cho 3,9

Ta có :

*630 = (*) + 6 + 3 + 0 ( * N và * < 10 )

*630 = (*) + ( 6 + 3 + 0 )

*630 = (*) + 9 chia hết cho 3 ; 9

Vậy để *630 (* + 9) chia hết cho 3 ; 9

Do * \(\ne0\) nên * {9}

 

10 tháng 7 2017

Để 3*5 chia hết cho 3 thì 3+5+* chia hết cho 3

Ta có 3 + 5 + *=8 + *

* thuộc {1;4;7}

Vậy * thuộc tập hợp {1;4;7}

Để 7*2 chia hết cho 9 thì

7 + 2 + *chia hết cho 9

Ta có 7 + 2 + * = 9 + *

* thuộc {0;9}

Vậy * thuộc {0;9}

Để *63* chia hết cho cả 2;3;5;9 thì

Để *63* chia hết cho cả 2 và 5 thì tận cùng của *63* là 0 tức * thứ hai bằng 0

Thay vào ta có *630

Chia hết cho 9 cx là chia hết cho 3 nên

*630 chia hết cho 9 thì *630 = 6 + 3 + 0 + * = 9 + *

* thứ hai thuộc {0;9} mak * thứ nhất là chữ số hàng nghìn đứng đầu nên * thứ nhất chỉ có thể là 9

Vậy * thứ nhất bằng 9 và * thứ 2 bằng 0

1 tháng 11 2016

Ta có:

\(\overline{abc}=100a+10b+c=n^2-1\left(1\right)\)

\(\overline{cba}=100c+10b+a=\left(n-2\right)^2=n^2-4n+4\left(2\right)\)

Từ (1) và (2) suy ra:

\(99a-99c=4n-5\\ \Leftrightarrow99\left(a-c\right)=4n-5\)

Suy ra: \(4n-5⋮99\)

Ta có: \(100\le n^2-1\le999\)

\(\Leftrightarrow101\le n^2\le1000\)

\(\Leftrightarrow11\le n\le31\)

\(\Leftrightarrow44\le4n\le124\)

\(\Leftrightarrow39\le4n-5\le119\)

Suy ra: \(4n-5=99\)

Suy ra: \(n=26\)

Suy ra: \(\overline{abc}=26^2-1=675\)