Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{2}=\frac{b}{3},\frac{b}{5}=\frac{c}{4}=\frac{a}{10}=\frac{b}{15},\frac{b}{15}=\frac{c}{12}=\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{a-b+c}{7}=\frac{-49}{7}=-7\)
\(\Rightarrow\frac{a}{10}=-7\Rightarrow a=\left(-7\right).10=-70\)
\(\Rightarrow\frac{b}{15}=-7\Rightarrow b=\left(-7\right).15=-105\)
\(\Rightarrow\frac{c}{12}=-7\Rightarrow c=\left(-7\right).12=-84\)
Ta có a/2 = a/10; a/3 = b/15 ( nhân 2 phân số với 1/5 )
b/5 =b/15 ; c/4 = c/ 12 ( nhân 2 phân số với 1/3 )
Ta thấy có 2 lần b/15 vậy ta giảm đi còn :
a/10 = b/15 = c/12
Áp dụng tính chất của dãy tỉ số bằng nhau ta được :
a/10 = b/15 = c/12 = a-b+c / 10-15+12 = -49 / 7=-7
=> a /10 = -7 => a = -70
=> b/15 = -7 => b= -105
=> c/12 = -7 => c = -84
Chúc các bạn học tốt !
Ta có : \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{b}{4}=\frac{c}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{8}=\frac{b}{12}\\\frac{b}{12}=\frac{c}{15}\end{cases}\Rightarrow}\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-c}{8+12-15}=\frac{10}{5}=2}\)(dãy tỉ số bằng nhau)
=> \(\hept{\begin{cases}a=16\\b=24\\c=30\end{cases}}\)
Ta có : \(\frac{a}{2}=\frac{b}{3}\Rightarrow\frac{a}{8}=\frac{b}{12}\) và \(\frac{b}{4}=\frac{c}{5}\Rightarrow\frac{b}{12}=\frac{c}{15}\Rightarrow\frac{a}{8}=\frac{b}{12}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có : \(\frac{a}{8}=\frac{b}{12}=\frac{c}{15}=\frac{a+b-c}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow a=2.8=16\) \(b=12.2=24\) \(c=15.2=30\)
Vậy \(a=16;b=24;c=30\)
Ta có : \(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)
Quy đồng : \(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\Rightarrow\begin{cases}\frac{x}{10}=-7\Rightarrow x=-7.10=-70\\\frac{y}{15}=-7\Rightarrow y=-7.15=-105\\\frac{z}{12}=-7\Rightarrow z=-7.12=-84\end{cases}\)
Vậy \(x=-70;y=105;z=-84\)
1/ Ta có \(\frac{a}{2}=\frac{b}{3}\rightarrow\frac{a}{10}=\frac{b}{15}\) (1)
\(\frac{b}{5}=\frac{c}{4}\rightarrow\frac{b}{15}=\frac{c}{12}\)(2)
Từ (1) và (2) suy ra \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy TSBN
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{49}{7}=7\)
\(\Leftrightarrow\frac{a}{10}=7\rightarrow a=70\)
Tương tự với b và c
Vậy......
bài này cũng dễ thôi, bạn chỉ cần chuyển các phân số đó thành một đẳng thức rồi áp dụng tính chất là ra thôi nha
a) Ta có: \(\frac{a}{3}=\frac{b}{4}.\)
=> \(\frac{a}{3}=\frac{b}{4}\) và \(a.b=48.\)
Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow\left\{{}\begin{matrix}a=3k\\b=4k\end{matrix}\right.\)
Có: \(a.b=48\)
=> \(3k.4k=48\)
=> \(12k^2=48\)
=> \(k^2=48:12\)
=> \(k^2=4\)
=> \(k=\pm2.\)
TH1: \(k=2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=2.3=6\\b=2.4=8\end{matrix}\right.\)
TH2: \(k=-2.\)
\(\Rightarrow\left\{{}\begin{matrix}a=\left(-2\right).3=-6\\b=\left(-2\right).4=-8\end{matrix}\right.\)
Vậy \(\left(a;b\right)=\left(6;8\right),\left(-6;-8\right).\)
Chúc bạn học tốt!
1) Ta có : \(\frac{x}{5}=\frac{y}{4}=\frac{2x}{10}=\frac{2x+y}{10+4}=\frac{28}{14}=2\)
Nên : \(\frac{x}{5}=2\Rightarrow x=10\)
\(\frac{y}{4}=2\Rightarrow y=8\)
a/10=b/15;b/15=c/12=>a/10=b/15=c/12
áp dụng t/chất dãy tỉ số bằng nhau ta có:
a/10=b/15=c/12=a-b+c/10-15+12=-49/7=-7
a/10=-7=>a=10.-7=-70
b/15=-7=>b=15.-7=-105
c/12=-7=>b=12.-7=-84
Vậy:a=-70;b=-105;c=-84
chúc bn học tốt
Ta có:
\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\) và \(a-b+c=-49\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\hept{\begin{cases}\frac{a}{10}=-7\Rightarrow a=-7.10=-70\\\frac{b}{15}=-7\Rightarrow b=-7.15=-105\\\frac{c}{12}=-7\Rightarrow c=-7.12=-84\end{cases}}\)
Vậy \(a=-70;b=-105;c=-84\)