\(\dfrac{17x+18}{3x^2+x-14}\) viết được thành
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

Giải bằng phương pháp hệ số bất định:

Ta có: \(3x^2+x-14=3x^2-6x+7x-14\)

\(=\left(x-2\right)\left(3x+7\right)\) nên \(C=\dfrac{17x+18}{\left(x-2\right)\left(3x+7\right)}\)

Ta có : \(\dfrac{a}{x-2}+\dfrac{b}{3x+7}=\dfrac{a\left(3x+7\right)+b\left(x-2\right)}{\left(x-2\right)\left(3x+7\right)}\)

Khai triển trên tử ra , ta có:

\(=\dfrac{\left(3a+b\right)x+\left(7a-2b\right)}{\left(x-2\right)\left(3x+7\right)}\)

Như vậy ta có: 17x+18 = (3a+b) x + (7a-2b) với mọi x;

Đồng nhất hệ số các hạng tử cùng bậc ở 2 vế ta có:

\(\left\{{}\begin{matrix}3a+b=7\\7a-2b=18\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=4\\b=5\end{matrix}\right.\)

CHÚC BẠN HỌC TỐT...

10 tháng 7 2017

Bạn chỉ cần phân tích phân thức C thành tổng của hai phân thức kia , rồi xem số đó là bao nhiêu rồi thay a , b vào thôi .

a: \(=\dfrac{1-2x+3+2y+2y-4}{6x^3y}=\dfrac{-2x+4y}{6x^3y}=\dfrac{-2\left(x-2y\right)}{6x^3y}=\dfrac{-x+2y}{3x^3y}\)

b: \(=\dfrac{x^2-2+2-x}{x\left(x-1\right)^2}=\dfrac{x\left(x-1\right)}{x\left(x-1\right)^2}=\dfrac{1}{x-1}\)

c: \(=\dfrac{3x+1+x^6-3x}{x^2-3x+1}\)

\(=\dfrac{x^6+1}{x^2-3x+1}\)

d: \(=\dfrac{x^2+38x+4+3x^2-4x-2}{2x^2+17x+1}\)

\(=\dfrac{4x^2+34x+2}{2x^2+17x+1}=2\)

29 tháng 11 2019

\(\frac{17x+18}{3x^2+x-14}=\frac{a}{x-2}+\frac{b}{3x+7}\)

\(\Rightarrow\frac{17x+18}{3x^2+x-14}=\frac{a\left(3x+7\right)+b\left(x-2\right)}{\left(x-2\right)\left(3x+7\right)}\)

\(\Rightarrow\frac{17x+18}{3x^2+x-14}=\frac{3ax+7a+bx-2b}{3x^2+x-14}\)

\(\Rightarrow\frac{17x+18}{3x^2+x-14}=\frac{3ax+5a+bx}{3x^2+x-14}\)

\(\Rightarrow\frac{17x+18}{3x^2+x-14}=\frac{\left(3a+b\right)x+5a}{3x^2+x-14}\)

Đồng nhất hệ số, ta có: \(\hept{\begin{cases}3a+b=17\\5a=18\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{31}{5}\\a=\frac{18}{5}\end{cases}}\)

28 tháng 6 2017

Phân thức đại số

4 tháng 2 2018

áp dụng phương pháp trị số riêng ta có

\(\dfrac{a}{x-2}+\dfrac{b}{\left(x+1\right)^2}=\dfrac{a\left(x+1\right)^2+b\left(x-2\right)}{\left(x-2\right)\left(x+1\right)^2}\)

đồng nhất phân thức \(\dfrac{x^2+5}{x^3-3x-2},\)ta có với mọi x:

\(a\left(x+1\right)^2+b\left(x-2\right)=x^2+5\)\(\left(1\right)\)

\(\left(1\right)\)đúng với mọi x nên để xác định a và b ở \(\left(1\right)\)ta có thể cho x=-1,x=2

với x=-1 thì -3b=6 => b=-2

với x=2 thì 9a=9 => a =1

7 tháng 12 2017

a) \(\dfrac{7}{8x^2-18}+\dfrac{1}{2x^2+3x}-\dfrac{1}{4x-6}\)

\(=\dfrac{7}{2\left(4x^2-9\right)}+\dfrac{1}{x\left(2x+3\right)}-\dfrac{1}{2\left(2x-3\right)}\)

\(=\dfrac{7}{2\left(2x-3\right)\left(2x+3\right)}+\dfrac{1}{x\left(2x+3\right)}-\dfrac{1}{2\left(2x-3\right)}\) MTC: \(2x\left(2x-3\right)\left(2x+3\right)\)

\(=\dfrac{7x}{2x\left(2x-3\right)\left(2x+3\right)}+\dfrac{2\left(2x-3\right)}{2x\left(2x-3\right)\left(2x+3\right)}-\dfrac{x\left(2x+3\right)}{2x\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{7x+2\left(2x-3\right)-x\left(2x+3\right)}{2x\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{7x+\left(4x-6\right)-\left(2x^2+3x\right)}{2x\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{7x+4x-6-2x^2-3x}{2x\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{-2x^2+8x-6}{2x\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{-2\left(x^2-4x+3\right)}{2x\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{-2\left(x^2-x-3x+3\right)}{2x\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{-2\left[\left(x^2-x\right)-\left(3x-3\right)\right]}{2x\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{-2\left[x\left(x-1\right)-3\left(x-1\right)\right]}{2x\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{-2\left(x-1\right)\left(x-3\right)}{2x\left(2x-3\right)\left(2x+3\right)}\)

\(=\dfrac{-\left(x-1\right)\left(x-3\right)}{x\left(2x-3\right)\left(2x+3\right)}\)

7 tháng 12 2017

ài quá mk lam đc rùi cảm ơn nha nhưng mà sai

2 tháng 11 2017

a)\(\dfrac{3x^2-12x+12}{x^4-8x}=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-8\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x^3-2^3\right)}=\dfrac{3\left(x-2\right)^2}{x\left(x-2\right)\left(x^2+2x+4\right)}=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)

11 tháng 11 2017

Bài 7:(Sbt/25) Dùng tính chất cơ bản của phân thức hoặc quy tắc đổi dấu để biến mỗi cặp phân thức sau thành một cặp phân thức bằng nó và có cùng mẫu thức :

a. \(\dfrac{3x}{x-5}\)\(\dfrac{7x+2}{5-x}\)

Ta có:

\(\dfrac{3x}{x-5}=\dfrac{-\left(3x\right)}{-\left(x-5\right)}=\dfrac{-3x}{5-x}\)

\(\dfrac{7x+2}{5-x}\)

Vậy .....

b.\(\dfrac{4x}{x+1}\)\(\dfrac{3x}{x-1}\)

Ta có:

\(\dfrac{4x}{x+1}=\dfrac{4x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x^2-4x}{x^2-1}\)

\(\dfrac{3x}{x-1}=\dfrac{3x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{3x^2+3x}{x^2-1}\)

Vậy ..........

c. \(\dfrac{2}{x^2+8x+16}\)\(\dfrac{x-4}{2x+8}\)

Ta có:

\(\dfrac{2}{x^2+8x+16}=\dfrac{4}{2\left(x+4\right)^2}\)

\(\dfrac{x-4}{2x+8}=\dfrac{\left(x-4\right)\left(x+4\right)}{2\left(x+4\right)\left(x+4\right)}=\dfrac{x^2-16}{2\left(x+4\right)^2}\)

Vậy .........

d. \(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}\)\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}\)

Ta có:

\(\dfrac{2x}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x\left(x-2\right)}{\left(x+1\right)\left(x-3\right)\left(x-2\right)}=\dfrac{2x^2-4x}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)

\(\dfrac{x+3}{\left(x+1\right)\left(x-2\right)}=\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}=\dfrac{x^2-9}{\left(x+1\right)\left(x-2\right)\left(x-3\right)}\)

Vậy .........

30 tháng 4 2017

a ) \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}=\dfrac{x+1}{3}\) (1)

\(\dfrac{2x^2+x-1}{6x-3}=\dfrac{\left(2x-1\right)\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{x+1}{3}\) (2)

Từ (1) ; (2) \(\Rightarrow\dfrac{x^2+3x+2}{3x+6}=\dfrac{2x^2+x-1}{6x-3}\) (đpcm)

b ) \(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=\dfrac{5}{x+1}\) (3)

\(\dfrac{5x^2-5x+5}{x^3+1}=\dfrac{5\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5}{x+1}\) (4)

Từ (3) và (4) \(\Rightarrow\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5x^2-5x+5}{x^3+1}\) (đpcm)

13 tháng 5 2017

a) \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{x^2+x+2x+2}{3\left(x+2\right)}=\dfrac{\left(x^2+x\right)+\left(2x+2\right)}{3\left(x+2\right)}=\dfrac{x\left(x+1\right)+2\left(x+1\right)}{3\left(x+2\right)}=\dfrac{\left(x+1\right)\left(x+2\right)}{3\left(x+2\right)}=\dfrac{x+1}{3}\left(1\right)\) \(\dfrac{2x^2+x-1}{6x-3}=\dfrac{2x^2+2x-x-1}{3\left(2x-1\right)}=\dfrac{2x\left(x+1\right)-\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{\left(2x-1\right)\left(x+1\right)}{3\left(2x-1\right)}=\dfrac{x+1}{3}\left(2\right)\) Từ (1)và (2)=> \(\dfrac{x^2+3x+2}{3x+6}=\dfrac{2x^2+x-1}{6x-3}\) b)\(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5\left(3x-2\right)}{3x\left(x+1\right)-2\left(x+1\right)}=\dfrac{5\left(3x-2\right)}{\left(3x-2\right)\left(x+1\right)}=\dfrac{5}{x+1}\left(3\right)\) \(\dfrac{5x^2-5x+5}{x^3+1}=\dfrac{5\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\dfrac{5}{x+1}\left(4\right)\) Từ (3) và (4) => \(\dfrac{15x-10}{3x^2+3x-\left(2x+2\right)}=\dfrac{5x^2-5x+5}{x^3+1}\)