K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
15 tháng 12 2020

\(a:b:c=4:7:9\)nên ta đặt \(a=4k,b=7k,c=9k\).

\(a+b-c=4k+7k-9k=2k=10\Rightarrow k=5\).

Vậy \(\hept{\begin{cases}a=4k=20\\b=7k=35\\c=9k=45\end{cases}}\)

2 tháng 11 2017

a/ Áp dụng t.c dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{350}{10}=35\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=35\\\dfrac{b}{3}=35\\\dfrac{c}{5}=35\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=70\\b=105\\c=175\end{matrix}\right.\)

Vậy .....

b/ \(\left(x+\dfrac{1}{2}\right)^2=\dfrac{4}{9}\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=\left(\dfrac{2}{3}\right)^2=\left(-\dfrac{2}{3}\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{3}\\x+\dfrac{1}{2}=-\dfrac{2}{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=-\dfrac{7}{6}\end{matrix}\right.\)

Vậy ..

2 tháng 11 2017

2. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a+b+c}{2+3+5}=\dfrac{350}{10}=35\\ \Rightarrow\left\{{}\begin{matrix}a=35\cdot2=70\\b=35\cdot3=105\\c=35\cdot5=175\end{matrix}\right.\)

3.

\(\left(x+\dfrac{1}{2}\right)^2=\dfrac{4}{9}\\ \Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{2}{3}\\x+\dfrac{1}{2}=-\dfrac{2}{3}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}-\dfrac{1}{2}\\x=\dfrac{-2}{3}-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{6}\\x=\dfrac{-7}{6}\end{matrix}\right.\)

25 tháng 5 2021

Do \frac{1}{{{n^2}}} < \frac{1}{{{n^2} - 1}} với mọi n ≥ 2 nên 

A < C = \frac{1}{{{2^2} - 1}} + \frac{1}{{{3^2} - 1}} + ... + \frac{1}{{{n^2} - 1}}

Mặt khác:

\begin{matrix} C = \dfrac{1}{{1.3}} + \dfrac{1}{{2.4}} + \dfrac{1}{{3.5}} + ... + \dfrac{1}{{\left( {n - 1} \right)\left( {n + 1} \right)}} \hfill \\ C = \dfrac{1}{2}\left( {\dfrac{1}{1} - \dfrac{1}{3} + \dfrac{1}{2} - \dfrac{1}{4} + \dfrac{1}{3} - \dfrac{1}{5} + ... + \dfrac{1}{{n - 1}} - \dfrac{1}{{n + 1}}} \right) \hfill \\ C = - \left( {1 + \dfrac{1}{2} - \dfrac{1}{n} - \dfrac{1}{{n + 1}}} \right) < \dfrac{1}{2}.\dfrac{3}{2} = \dfrac{3}{4} < 1 \hfill \\ \end{matrix}

Vậy A < 1

25 tháng 5 2021

b.

\begin{matrix} B = \dfrac{1}{{{2^2}}} + \dfrac{1}{{{4^2}}} + ... + \dfrac{1}{{{{\left( {2n} \right)}^2}}} \hfill \\ B = \dfrac{1}{{{2^2}}}\left( {1 + \dfrac{1}{{{2^2}}} + \dfrac{1}{{{3^2}}} + .... + \dfrac{1}{{{n^2}}}} \right) \hfill \\ B = \dfrac{1}{{{2^2}}}\left( {1 + A} \right) \hfill \\ \end{matrix}

\(\Rightarrow P< 0,5\)

1 tháng 11 2019

Cái đề bài chuẩn CMNR.^^

25 tháng 7 2021

a, Ta có: \(\frac{a}{c}\)\(\frac{c}{b}\)\(\Rightarrow\)\(ab\)\(c^2\)

Để chứng minh \(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a}{b}\)thì ta phải chứng minh b(a2+c2)=a(b2+c2)

Ta có: b(a2+c2)= b.a2+b.c(1)

Thay ab= c2 vào 1 ta có:

b.a2+b.a.b= b2.a+a2.bb

Ta có: a(b2+c2) = a.b2+a.c2 (2)

Thay ab= c2 vào (1) ta có:

a.b2+b.a.a= b2.a+a2.bb

Vì b2.a+a2.b= b2.a+a2.b \(\Rightarrow\)b(a2+c2)= a(b2+c2)

\(\Rightarrow\)\(\frac{a^2+c^2}{b^2+c^2}\)\(\frac{a}{b}\)

\(\Rightarrow\)Đpcm (Điều phải chứng minh)

Chúc bn học tốt

25 tháng 7 2021

a.

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{a^2+ab}{b^2+ab}=\frac{a.\left(a+b\right)}{b\left(a+b\right)}=\frac{a}{b}\)

b.

\(\frac{a}{c}=\frac{c}{b}\Leftrightarrow c^2=ab\Rightarrow\frac{\left(b^2-ab\right)+\left(ab-a^2\right)}{a\left(a+b\right)}=\frac{b\left(b-a\right)+a\left(b-a\right)}{a\left(a+b\right)}=\frac{b-a}{a}\)

20 tháng 11 2017

Theo đề bài ta được:

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{a^2+ac}{c^2-ac}=\dfrac{a\left(a+c\right)}{c\left(c-a\right)}=\dfrac{bk\left(bk+dk\right)}{dk\left(dk-bk\right)}=\dfrac{bk\left[k\left(b+d\right)\right]}{dk\left[k\left(d-b\right)\right]}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\left(1\right)\)

\(\dfrac{b^2+bd}{d^2-bd}=\dfrac{b\left(b+d\right)}{d\left(d-b\right)}\left(2\right)\)

Từ (1) và (2) suy ra:\(\dfrac{a^2+ac}{c^2-ac}=\dfrac{b^2+bd}{d^2-bd}\)

20 tháng 11 2017

Thanks!

8 tháng 11 2018

chúc bạn học tốt !

chúc bạn học tốt !

chúc bạn học tốt !

chúc bạn học tốt !