Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^3+x^2+x-1=0\)
\(\Rightarrow2x^3-x^2+2x^2-x+2x-1=0\)
\(\Rightarrow x^2\left(2x-1\right)+x\left(2x-1\right)+2x-1=0\)
\(\Rightarrow\left(2x-1\right)\left(x^2+x+1\right)=0\)
Mà \(x^2+x+1=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Do đó: \(2x-1=0\Rightarrow x=\frac{1}{2}\) (loại vì \(x\notin Z\))
Vậy đa thức C không có nghiệm nguyên
(phần tách C thành tích các đa thức chính là \(\left(2x-1\right)\left(x^2+x+1\right)\) )
a)Vì T(x)=P(x)+Q(x)
=>T(x)=(-2x2-5x+1)+(-2x2+x-5)
=>T(x)=-2x2-5x+1-2x2+x-5
=>T(x)=(-2x2-2x2)+(-5x+x)+(1-5)=-4x2-4x-4
b)Xét T(x)=-4x2-4x-4=0
=>-(4x2+4x+4)=0
=>4x2+4x+4=0
=>4x2+2x+2x+1+3=0
=>2x(2x+1)+(2x+1)+3=0
=>(2x+1)(2x+1)+3=0
=>(2x+1)2+3=0
Vì (2x+1)2 > 0 với mọi x
=>(2x+1)2+3 > 3 > 0 với mọi x
=>T(x) vô nghiệm
a) Ta có: P(x) = 0 khi 3 – 2x = 0
=>-2x = -3 => x = \(\dfrac{3}{2}\)
b) Q(x) =x2 +2 là đa thức không có nghiệm vì
x2 ≥ 0
2 > 0 (theo quy tắc nhân hai số hữu tỉ cùng dấu)
=>x2 + 2 > 0 với mọi x
Nên Q(x) không có nghiệm trong R
a) Ta có P(x) = 0 khi 3 – 2x = 0
b) Đa thức Q(x) không có nghiệm, bởi vì:
x2 ≥ 0 với mọi x thuộc R.
2 > 0
\(\Rightarrow\) Q(x) = x2 + 2 > 0 với mọi x thuộc R.
Do đó, không có giá trị x nào thuộc R để Q(x) = 0 hay đa thức Q(x) không có nghiệm.
a)
\(x^2-5x+4=x^2+x-4x+4=x\left(x+1\right)-4\left(x+1\right)=\left(x+1\right)\left(x-4\right)\)
Để đa thức có nghiệm thì \(\left(x+1\right)\left(x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=4\end{cases}}\)
b)
\(x+2x^2=x\left(1+2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\1+2x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
c)
\(x\left(x-1\right)-x\left(x+3\right)+4\)
\(=x\left(x-1-x-3\right)+4\)
\(=-4x+4\)
Đa thức có nghiệm khi:\(-4\left(x+1\right)=0\)
\(\Leftrightarrow x=-1\)
a) A(x)= \(-2x^4+x^2-x-7-2\)
B(x)=\(2x^4+6x^3-2x^3-x^2-8x-5\)
b) Thay số:A(x)
\(1^2-1-2-2\cdot1^4+7=3\)
B(x)
\(6\cdot2^3+2\cdot2^4-8\cdot2-5-2\cdot2^3-2^2=39\)
c)\(6x^3-2x^3-7x-12-2\)
1. Thay x = -2 vào \(f\left(x\right)\), ta có:
\(\left(-2\right)^3+2.\left(-2\right)^2+a.\left(-2\right)+1=\)0
=> -8 + 8 - 2a + 1 = 0
=> -2a +1 = 0
=> -2a = -1
=> a = \(\frac{1}{2}\)
Vậy a = \(\frac{1}{2}\)
2. * Thay x = 1 vào \(f\left(x\right)\), ta có:
12 + 1.a + b = 1 + a + b = 0 ( 1)
* Thay x = 2 vào biểu thức \(f\left(x\right)\), ta có:
22 + 2.a + b = 4 + 2a + b = 0 ( 2)
* Lấy (2 ) - ( 1) , ta có:
( 4 + 2a + b ) - ( 1 + a + b ) = 3 + a
=> 3 + a = 0
=> a = -3
* 1 + a + b = 0
=> 1 - 3 + b = 0
=> b = -1 + 3 = -2
Vậy a= -3 và b= -2
Đặt A(x)=0
\(\Leftrightarrow x^3-2x=0\)
\(\Leftrightarrow x\left(x^2-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{2}\\x=-\sqrt{2}\end{matrix}\right.\)
Vậy: \(S=\left\{0;\sqrt{2};-\sqrt{2}\right\}\)
A(x)= x3 - 2x
Cho A(x) = 0
=> x3 - 2x = 0
x ( x2 - 2 ) = 0
x = 0 hoặc x2 -2 = 0
x 2 = 2
x = \(\sqrt{2}\) hoặc x = \(-\sqrt{2}\)
Vậy x = 0 hoặc x = \(\sqrt{2}\) hoặc x = \(-\sqrt{2}\) là nghiệm của đa thức A(x)