Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức khai triển nhị thức Newton, ta có :
\(\left(1+mx\right)^n=1+C_n^1\left(mx\right)+C_n^2\left(mx\right)^2+.....C_n^n\left(mx\right)^n\)
\(\left(1+nx\right)^m=1+C_m^1\left(nx\right)+C_m^2\left(nx\right)+....+C_m^m\left(nx\right)^m\)
Mặt khác ta có : \(C_n^1\left(mx\right)=C_n^1\left(nx\right)=mnx\)
\(C_n^2\left(mx\right)^2=\frac{n\left(n-1\right)}{2}m^2x^2;C_m^2\left(nx\right)^2=\frac{m\left(m-1\right)}{2}n^2x^2;\)
Từ đó ta có :
\(L=\lim\limits_{x\rightarrow0}\frac{\left[\frac{n\left(n-1\right)}{2}m^2-\frac{m\left(m-1\right)}{2}n^2\right]x^2+\alpha_3x^3+\alpha_4x^4+....+\alpha_kx^k}{x^2}\left(2\right)\)
Từ (2) ta có : \(L=\lim\limits_{x\rightarrow0}\left[\frac{mn\left(n-m\right)}{2}+\alpha_3x+\alpha_4x^2+....+\alpha_kx^{k-2}\right]=\frac{mn\left(n-m\right)}{2}\)
Ta có \(\frac{x^n-nx+n-1}{\left(x-1\right)^2}=\frac{\left(x^n-1\right)-n\left(x-1\right)}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)\left(x^{n-1}+x^{n-1}+....+x+1-n\right)}{\left(x-1\right)^2}\) (1)
Từ (1) suy ra :
\(L=\lim\limits_{x\rightarrow1}\frac{x^{n-1}+x^{n-2}+.....+x-\left(n-1\right)}{x-1}\) (2)
\(L=\lim\limits_{x\rightarrow1}\frac{\left(x^{n-1}-1\right)+\left(x^{n-2}-1\right)+.....+\left(x-1\right)}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\frac{\left(x-1\right)\left[\left(x^{n-1}+x^{n-3}+.....+x+1\right)+.....+\left(x+1\right)+1\right]}{x-1}\)
\(=\lim\limits_{x\rightarrow1}\left[1+\left(x+1\right)+....+\left(x^{n-2}+x^{n-3}+.....+x+1\right)\right]\)
\(=1+2+....+\left(n-1\right)=\frac{n\left(n-1\right)}{2}\)
Đáp án D sai
Hàm đa thức có giới hạn tại mọi điểm và tại tất cả các điểm thì giới hạn trái luôn bằng giới hạn phải
\(lim\frac{n^2-\sqrt[3]{n^6-1}}{\sqrt{n^4+1}+n^2}=lim\frac{1}{\left(\sqrt{n^4+1}+n^2\right)\left(n^4+n^2\sqrt[3]{n^6-1}+\sqrt[3]{\left(n^6-1\right)^2}\right)}=0\)
lim\(\frac{2^n+4^n+5^n}{2.3^n+4^n+3.5^n}\)
=lim\(\frac{\left(\frac{2}{5}\right)^n+\left(\frac{4}{5}\right)^n+1}{2.\left(\frac{3}{5}\right)^n+\left(\frac{4}{5}\right)^n-3}=-\frac{1}{3}\)
\(=lim\frac{3.2^n-3^n}{2.2^n+3.3^n}=lim\frac{3.\left(\frac{2}{3}\right)^n-1}{2.\left(\frac{2}{3}\right)^n+3}=\frac{3.0-1}{2.0+3}=-\frac{1}{3}\)
a;Chia n cả tử và mẫu
b;Chia cho n4 mà tử dần đến 0 mẫu dần đến 1 nên lim =0
Sử dụng công thức tổng cấp số nhân:
\(1+3+3^2+...+3^n=\frac{3^{n+1}-1}{3-1}=\frac{3^{n+1}-1}{2}\)
\(1+4+...+4^n=\frac{4^{n+1}-1}{3}\)
\(\Rightarrow u_n=\frac{3\left(3^{n+1}-1\right)}{2\left(4^{n+1}-1\right)}=\frac{3.3^{n+1}-3}{2.4^{n+1}-2}\)
\(\Rightarrow lim\left(u_n\right)=lim\frac{3.3^{n+1}-3}{2.4^{n+1}-2}=\frac{3.\left(\frac{3}{4}\right)^{n+1}-3\left(\frac{1}{4}\right)^{n+1}}{2-2.\left(\frac{1}{4}\right)^{n+1}}=\frac{0}{2}=0\)
\(\lim\limits_{x\rightarrow+\infty}\left(ax-\sqrt{bx^2-2x+2018}\right)=\lim\limits_{x\rightarrow+\infty}x.\lim\limits_{x\rightarrow+\infty}\left(a-\sqrt{b}\right)=\pm\infty\)
Còn tuỳ vào độ lớn của a và b
Đúng là giá trị giới hạn còn phụ thuộc vào giá trị của $a,b$ mới có thể khẳng định nhưng dòng công thức bạn viết ở trên chưa đúng đâu nhé.