\(x^2+2006x\)...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Để \(x^2+2006x\)nhận giá trị âm

=> \(x^2+2006x< 0\)mà \(x^2>0\forall x\)

=> \(2006x< 0\)

=> \(x< 0\)

Vậy với mọi x<0 thì \(x^2+2006x\)nhận giá trị âm

Hok Tốt !!!!!!!!!!!!

15 tháng 9 2020

x2 + 2006x 

Để biểu thức có giá trị âm 

=> x2 + 2006x < 0

<=> x( x + 2006 ) < 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x< 0\\x+2006>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< 0\\x>-2006\end{cases}}\Leftrightarrow-2006< x< 0\)

2. \(\hept{\begin{cases}x>0\\x+2006< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>0\\x< -2006\end{cases}}\)( loại )

Vậy với -2006 < x < 0 thì biểu thức có giá trị âm

2 tháng 12 2018

a) Để \(C=\frac{3x+2}{x+1}=\frac{3x+3-1}{x+1}=\frac{3.\left(x+1\right)-1}{x+1}=3-\frac{1}{x+1}\)nguyên

=> 1/x+1 nguyên

=> 1 chia hết cho x + 1

=>...

bn tự làm tiếp nha

b) Để \(D=\frac{2x-1}{x-1}=\frac{2x-2+1}{x-1}=\frac{2.\left(x-1\right)+1}{x-1}=2+\frac{1}{x-1}\)nguyên

=>...

30 tháng 11 2018

a)  x=2 :y thuộc {9: -9 }

b) đặt k nha bạn kq = 4/ 5

k nha

30 tháng 11 2018

1, \(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Vì \(\hept{\begin{cases}\left|2x-27\right|^{2011}\ge0\forall x\\\left(3y+10\right)^{2012}\ge0\forall x\end{cases}\Rightarrow VT\ge0\forall x}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-27=0\\3y+10=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}}}\)
Vậy ...................

Nếu A nhỏ nhất => x-3 lớn nhất mak x\(\in\) Z . Mk k hiểu lắm x-3 lớn nhất thì nhiều số x ak, hay sao? lm giùm mk đi các bn

14 tháng 3 2019

a) \(P=\frac{a^2b}{c}\)

P = 0 khi \(a^2b=0\)

\(\Rightarrow\hept{\begin{cases}a^2=0\\b=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=0\\b=0\end{cases}}\)(hai trường hợp)

P âm khi 

\(\hept{\begin{cases}a^2b< 0\\c< 0\end{cases}}\)

Mà \(a^2\ge0\forall a\)

\(\Rightarrow P< 0khi\hept{\begin{cases}b< 0\\c< 0\end{cases}}\)(hai trường hợp)

P > 0 khi \(a>0;b>0;c>0\)

CÂU b) LÀM TƯƠNG TỰ NHA BẠN HOK TOT

1 tháng 8 2019

Tìm GTNN

Ta có: A = |x - 1| + |x - 4|

=>  A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3

=> A \(\ge\)3

Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0

<=> \(1\le x\le4\)

Vậy Min A = 3 <=> \(1\le x\le4\)

Tìm GTLN

Ta có: -|x + 2| \(\le\)\(\forall\)x

hay A  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max A = 0 <=> x = -2

Để \(x^2+5x< 0\)

Vì \(x^2\ge0\)nên \(5x>-x^2\)

\(\Rightarrow5>-x^2+x\)

Phần b nhìn hơi logic thế thôi nhưng tương tự