\(\sqrt{m^2+m+23}\) la so huu ti

 


<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

\(\sqrt{m^2+m+23}\)nguyên dương<=>m2+m+23=k2 (k\(\in\)N*)

4m2+4m+92=4k2<=>(2m+1)2+91=4k2<=>92=(2k-2m-1)(2k+2m+1)

Dễ thấy  2k-2m-1<2k+2m+1 vì m nguyên dương

Thử từng cặp ước nguyên dương của 92 để giải phương trình

15 tháng 6 2017

Lần sau ghi dấu ra xíu nhé :v

a) Đặt \(\sqrt{x}=a\Rightarrow B=\left(\dfrac{a}{a+4}+\dfrac{4}{a-4}\right):\dfrac{a^2+16}{a+2}\)

Quy đồng,rút gọn : \(B=\dfrac{a+2}{a^2-16}\Rightarrow B=\dfrac{\sqrt{x}+2}{x-16}\)

b) \(B\left(A-1\right)=\dfrac{\sqrt{x}+2}{x-16}\left(\dfrac{\sqrt{x}+4}{\sqrt{x}+2}-1\right)=\dfrac{2}{x-16}\)

x - 16 là ước của 2 => \(x\in\left\{14;15;17;18\right\}\)

mới làm quen toán 9 ;v có gì k rõ ae chỉ bảo nhé :))

15 tháng 6 2017

dung ko the ban, sao ngan the ?

Bài 1:

a: Để hàm số đồng biến thì a>0

Để hàm số nghịch biến thì a<0

b: Để hai đường vuôg góc thì a*1=-1

=>a=-1

Bài 2:

PTHĐGĐ là:

1/4x^2=2x+m-4

=>x^2=8x+4m-16

=>x^2-8x-4m+16=0

Δ=(-8)^2-4(-4m+16)

=64+16m-64=16m

Để (P) cắt (d) tại hai điểm phân biệt thì 16m>0

=>m>0

Câu 1: 

a: \(P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x+15}{x-9}\cdot\dfrac{\sqrt{x}+3}{3}\)

\(=\dfrac{-3\sqrt{x}+15}{\sqrt{x}-3}\cdot\dfrac{1}{3}=\dfrac{-\sqrt{x}+5}{\sqrt{x}-3}\)

b: Thay \(x=11-6\sqrt{2}\) vào P, ta được:

\(P=\dfrac{-\left(3-\sqrt{2}\right)+5}{3-\sqrt{2}-3}=\dfrac{-3+\sqrt{2}+5}{-\sqrt{2}}\)

\(=\dfrac{2-\sqrt{2}}{-\sqrt{2}}=-\sqrt{2}+1\)

 

19 tháng 1 2019

a ) ĐK : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)\(P=\left(\dfrac{1}{\sqrt{x}+1}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)^{^2}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}:\dfrac{\sqrt{x}+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+3}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-2\sqrt{x}+1}{x+4\sqrt{x}+3}\)

2 tháng 9 2015

de A nguyen

=> 3 chia het cho \(\sqrt{x}-2\)

=> \(\sqrt{x}-2\in\left\{-3;-1;1;3\right\}\)

=>\(\sqrt{x}\in\left\{-1;1;3;5\right\}\)

=>x{1;1,73;1,2,23}

mình làm tròn số đấy

13 tháng 7 2019

\(A\inℤ\Leftrightarrow3⋮\left(\sqrt{x}-2\right)\)

\(\Leftrightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Lập bảng:

\(\sqrt{x}-2\)\(1\)\(-1\)\(3\)\(-3\)
\(\sqrt{x}\)\(3\)\(1\)\(5\)\(-1\)
\(x\)\(9\)\(1\)\(25\)Loại vì \(\sqrt{x}\ge0\)

Vậy \(x\in\left\{1;9;25\right\}\)