\(\frac{6}{x-3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2017

để x có giá trị nguyên thì 6/(x-3) phải có giá trị nguyên

=> 6 chia hết cho (x-3)

=> (x-3) thuộc ước của 6

ta có bảng sau

x-31-12-23-36-6
x4251609-3

vậy x thuộc các kết quả trên thì biểu thức mang giá trị nguyên 

6 tháng 8 2017

tôi ko biết đâu

6 tháng 8 2017

Lớp 8 thì mk ko bt, mk ms lớp 6 thôi

6 tháng 8 2017

\(A=\frac{2\left(x+1\right)}{x^3+1}=\frac{2\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{2}{x^2-x+1}\)

Để A nhận GT nguyên \(\Leftrightarrow x^2-x+1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Mà \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\) nên

\(\orbr{\begin{cases}x^2-x+1=0\\x^2-x+1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\left(x-1\right)=0\\\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x\left(x-1\right)=0\\\left(x-\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)x=0\\x-\frac{1}{2}=+-\sqrt{\frac{5}{4}}\left(l\right)\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)

Vậy \(x=\left\{0;1\right\}\)

16 tháng 12 2016

a) \(Q=\frac{x+3}{2x+1}-\frac{x-7}{2x+1}\left(ĐK:x\ne-\frac{1}{2}\right)\)

\(=\frac{x+3-x+7}{2x+1}=\frac{10}{2x+1}\)

b) Để Q nguyên \(\Leftrightarrow\frac{10}{2x+1}\in Z\)

=> \(2x+1\inƯ\left(10\right)\)

=> \(2x+1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

Ta có bảng sau:

2x+11-12-24-410-10
x0-1\(\frac{1}{2}\) (loại)\(-\frac{3}{2}\)(loại)\(\frac{3}{2}\)(loại)\(-\frac{5}{2}\)(loại)\(\frac{9}{2}\)(loại)\(-\frac{11}{2}\)(loại)

Vậy \(x\in\left\{0;-1\right\}\)

27 tháng 11 2017

Cái bảng chỗ 4 vs -4 sai r nhé
Chỗ đấy phải là 5 vs -5 chứ

7 tháng 11 2018

cho tui thì tui trả lời

24 tháng 8 2020

b, P=x+2x+3−5x2+3x−2x−6+12−xP=x+2x+3−5x2+3x−2x−6+12−x

=x+2x+3−5(x+3)(x−2)−1x−2=x+2x+3−5(x+3)(x−2)−1x−2

=(x+2)(x−2)(x+3)(x−2)−5(x+3)(x−2)−x+3(x+3)(x−2)=(x+2)(x−2)(x+3)(x−2)−5(x+3)(x−2)−x+3(x+3)(x−2)

=x2−4−5−x−3(x+3)(x−2)=x2−x−12(x+3)(x−2)=x2−4−5−x−3(x+3)(x−2)=x2−x−12(x+3)(x−2)

=x2−4x+3x−12(x+3)(x−2)=x2−4x+3x−12(x+3)(x−2)

=(x−4)(x+3)(x+3)(x−2)=x−4x−2=(x−4)(x+3)(x+3)(x−2)=x−4x−2

c, Để P=−34P=−34

⇔x−4x−2=−34⇔x−4x−2=−34

⇔4(x−4)=−3(x−2)⇔4(x−4)=−3(x−2)

⇔4x−16+3x−6=0⇔4x−16+3x−6=0

⇔7x−22=0⇔7x−22=0

⇔x=227⇔x=227

d, Để P có giá trị nguyên

⇔x−4⋮x−2⇔x−4⋮x−2

⇔(x−2)−2⋮x−2⇔(x−2)−2⋮x−2

⇔2⋮x−2⇔x−2∈Ư(2)={1;−1;2;−2}⇔2⋮x−2⇔x−2∈Ư(2)={1;−1;2;−2}

x−2x−21-12-2
x3140

e,

x2−9=0x2−9=0

⇒x2=9⇒[x=3x=−3⇒x2=9⇒[x=3x=−3

Với x=3,có :

x−4x−2=3−43−2=−11=−1x−4x−2=3−43−2=−11=−1

Với x=-3,có :

x−4x−2=−3−4−3−2=75x−4x−2=−3−4−3−2=75

12 tháng 11 2018

a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)

\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)

d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)

Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)

21 tháng 9 2019

a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)

\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)

d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)

\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng nhé

e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)

\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)

19 tháng 10 2018

a) Gọi biểu thức trên là A. Để A nguyên thì \(5⋮2x+1\Leftrightarrow2x+1\inƯ\left(5\right)=\left(\pm1;\pm5\right)\)

Ta có bảng: 

2x + 1-5-115
x -3 -1 02

Do vậy \(x=\left\{-3;-1;0;2\right\}\)

19 tháng 10 2018

b) Đặt \(A=\frac{x^3-3x^2+5}{x+2}=\frac{x^3+2x^2-5x^2-10x+10x+20-15}{x+2}\)

\(=\frac{x^2.\left(x+2\right)-5x.\left(x+2\right)+10.\left(x+2\right)-15}{x+2}=\frac{\left(x+2\right).\left(x^2-5x+10\right)-15}{x+2}\)

\(=x^2-5x+10+\frac{15}{x+2}\)

Để A nguyên

=> 15/x+2 nguyên ( do x nguyên nên x2 -5x + 10 cũng nguyên)

=> 15 chia hết cho x + 2

=> x + 2 thuộc Ư(15)={1;-1;3;-3;5;-5;15;-15}

...

bn tự xét nha

13 tháng 12 2019

a) ĐKXĐ: \(\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\\2-x\ne0\end{cases}}\) => \(\hept{\begin{cases}x\ne-2\\x\ne\pm2\\x\ne2\end{cases}}\) => \(x\ne\pm2\)

Ta có:Q = \(\frac{x-1}{x+2}+\frac{4x+4}{x^2-4}+\frac{3}{2-x}\)

Q = \(\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4x+4}{\left(x-2\right)\left(x+2\right)}-\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

Q = \(\frac{x^2-2x-x+2+4x+4-3x-6}{\left(x+2\right)\left(x-2\right)}\)

Q = \(\frac{x^2-2x}{\left(x+2\right)\left(x-2\right)}=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{x+2}\)

b) ĐKXĐ P: x - 3 \(\ne\)0 => x \(\ne\)3

Ta có: P = 3 => \(\frac{x+2}{x-3}=3\)

=> x + 2 = 3(x - 3)

=> x + 2 = 3x - 9

=> x - 3x = -9 - 2

=> -2x = -11

=> x = 11/2 (tm)

Với x = 11/2 thay vào Q => Q = \(\frac{\frac{11}{2}}{\frac{11}{2}+2}=\frac{11}{15}\)

c) Với x \(\ne\)\(\pm\)2; x \(\ne\)3

Ta có: M = PQ = \(\frac{x+2}{x-3}\cdot\frac{x}{x+2}=\frac{x}{x-3}=\frac{x-3+3}{x-3}=1+\frac{3}{x-3}\)

Để M \(\in\)Z <=> 3 \(⋮\)x - 3

=> x - 3 \(\in\)Ư(3) = {1; -1; 3; -3}

Lập bảng:

x - 3 1 -1 3 -3
  x 4 2 (ktm) 6 0

Vậy ...