K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2015

a) xét 2 TH 

TH1: (x+5) và (x-3) cùng >0

TH2 : ( x+5) và (x-3) cùng <0

b) xét tương tự câu a NHƯNG xét ngược dấu đi VD (4-x)>0 và (2-x)<0 

Trường hợp còn lại xét ngược lại

Đúng nha

18 tháng 4 2016

Ta có: f(x) = x2+4x-5= x(x+4)-5

Để f(x)>0 thì x(x+4)>5

=> x\(\ge\)1

Để f(x)<0 thì x(x+4)<5

=> x < -4

28 tháng 8 2014

Nhóm thành tích
 \(A = (x+1)(5x^2-4x+4)/ x^2\)

A=0 => x= -1  Hoặc
            \( 5x^2-4x+4=0\)  
            Nhưng  \( 5x^2-4x+4>0\)  Luôn > 0 vì
                                 Nhóm   \( 5x^2-4x+4 = 5 (x-2/5)^2 + 16/5\) luôn >0 
A>0 => x+1 > 0 => x>-1  Và
             \( 5x^2-4x+4>0\)  Luôn > 0 Đã chứng minh ở trên
A<0 thì x<-1

27 tháng 9 2024

a; (\(x\) - 2)2.(\(x+1\)).(\(x\) - 4) < 0

    (\(x-2\))2 ≥ 0 ∀\(x\)\(x+1\) = 0 ⇒ \(x=-1\)\(x-4\) = 0 ⇒ \(x=4\)

Lập bảng ta có:

\(x\)        - 1             4
\(x+1\)  -       0       +    |       +
\(x-4\)  -       |         -     0     +
(\(x-2\))2 +       |        +     |      +
(\(x-2\))2.(\(x+1\)).(\(x+4\))   +     0       -      0     +

Theo bảng trên ta có: -1 < \(x\) < 4

Vậy \(-1< x< 4\)

27 tháng 9 2024

b; [\(x^2\).(\(x-3\)):(\(x-9\))] < 0

    \(x-3=0\)⇒ \(x=3\)\(x-9\) = 0 ⇒ \(x=9\)

    Lập bảng ta có:

\(x\)            3                                 9
\(x-3\)     -      0      +                         |     +
\(x-9\)     -     |         -                         0    + 
\(x^2\)   +       |        +                         |     +                              
\(x^2\)(\(x-3\)):(\(x-9\))    +     0         -                      0      +

Theo bảng trên ta có:     3 < \(x\) < 9

Vậy 3 < \(x\) < 9

 

14 tháng 8 2020

a) 

Với A=0

\(\Rightarrow x\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

với A<0

\(\Rightarrow x\left(x-4\right)< 0\)

\(th1\orbr{\begin{cases}x< 0\\x-4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x>4\end{cases}\Leftrightarrow4< x< 0\left(vl\right)}\)

\(th2\orbr{\begin{cases}x>0\\x-4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x< 4\end{cases}\Leftrightarrow0< x< 4\left(tm\right)}\)

\(\Leftrightarrow0< x< 4\Leftrightarrow x\in\left\{1;2;3\right\}\)

Với A>0

\(\Rightarrow x\left(x-4\right)>0\)

\(th1\orbr{\begin{cases}x>0\\x-4>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>0\\x>4\end{cases}}\Leftrightarrow x>4\)

\(th2\orbr{\begin{cases}x< 0\\x-4< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 0\\x< 4\end{cases}}\Leftrightarrow x< 0\)

14 tháng 8 2020

b) 

Với B=0

\(\Rightarrow\frac{x-3}{x}=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=0\Rightarrow x=3\\x=0\left(l\right)\end{cases}}\)

vậy x=3 thì B = 0

Với B < 0

\(\Rightarrow\frac{x-3}{x}< 0\)

\(th1\orbr{\begin{cases}x-3>0\\x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>3\\x< 0\end{cases}\Leftrightarrow3< x< 0\left(vl\right)}\)

\(th2\orbr{\begin{cases}x-3< 0\\x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 3\\x>0\end{cases}\Leftrightarrow0< x< 3\left(tm\right)\Leftrightarrow x\in\left\{1;2\right\}}\)

Với B > 0

\(th1\orbr{\begin{cases}x-3>0\\x>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>3\\x>0\end{cases}\Leftrightarrow x>3}\)

\(th2\orbr{\begin{cases}x-3< 0\\x< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< 3\\x< 0\end{cases}\Leftrightarrow x< 0}\)