\(x^4+mx^3+x^2+mx+1=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2016

chào bạn! 
x#0 . chia 2 vế của phương trình cho x^2, phương trình trở thành: 
x^2 +mx +m+ m/x+1/x^2=0 
<=>( x^2 + 1/ x^2) + m ( x + 1/m) + m=0 
đặt t= x + 1/m . Ta có: t^2 = ( x^2 + 1/ x^2)^2 -2 . phương trình viết lại: 
t^2 + mt +m -2 =0 
Để phương trình có nghiệm, tính biệt đen ta = m^2 -4(m-2) = m^2 -4m +8 = (m - 2)^2 +4 >0, mọi m thuộc R. 
Vậy với mọi m thuộc R pt luôn có 2 nghiệm phân biệt, 
Bài này thuộc trình bồi dưỡng hs giỏi lớp 9, bạn sẽ gặp lại trong kì thi đại học.

28 tháng 3 2016

kết quả là m thuộc R

25 tháng 5 2018

Có : đenta = (-m)2 -4(m-1) = m2 -4m + 4 = (m-2)2 >= 0

Áp dụng hệ thức Vi-ét, ta có : x1 + x2 = m

                                                x1.x2 = m-1

Có:\(\frac{1}{x_{ }_{ }1}+\frac{1}{x2}=\frac{x1.x2}{2011}\)

<=> \(\frac{x1+x2}{x1.x2}=\frac{x1.x2}{2011}\)

<=> \(\frac{m}{m-1}=\frac{m-1}{2011}\)

<=> 2011m = (m-1)2 

<=> 2011m = m2-2m + 1

<=> m2-2013m + 1 =0

Giải pt ra

19 tháng 5 2023

​a)m=8

b) �=±6m=±6

c)m=1

 

 

5 tháng 2 2018

4.

(1) => y=2m-mx thay vào (2) ta được x+m(2m-mx)=m+1

<=> x-m2x=-2m2+m+1

<=> x(1-m)(1+m)=-(m-1)(1+2m)

với m=-1 thì pt vô nghiệm

với m=1 thì pt vô số nghiệm => có nghiệm nguyên => chọn

với m\(\ne\pm\) 1 thì x=\(\frac{-2m-1}{m+1}\)=\(-2+\frac{1}{m+1}\)

=> y=2m-mx=xm-m(-2+\(\frac{1}{m+1}\)) =2m+2m-\(\frac{m}{m+1}\)=4m-1+\(\frac{1}{m+1}\)

để x y nguyên thì \(\frac{1}{m+1}\)nguyên ( do m nguyên)

=> m+1\(\in\)Ư(1)={1;-1}

=> m\(\in\){0;-2} mà m nguyên âm nên m=-2 

vậy m=-2 thì ...
P/s hình như 1 2 3 sai đề

8 tháng 2 2018

Phương trình Câu 3 là \(x^4-2x^2+m-1\) ạ hihi

6 tháng 10 2019

<=>\(\hept{\begin{cases}4x^2+2mx=2\\mx^2-x=-2\end{cases}}\)<=>\(\hept{\begin{cases}\left(4+m\right)x^2+\left(2m-1\right)x=0\\mx^2-x=-2\end{cases}}\)<=>\(\hept{\begin{cases}x\left(\left(m+4\right)x+2m-1\right)=0\\mx^2-x=-2\end{cases}}\)

<=> \(\hept{\begin{cases}x=0\\mx^2-x=-2\end{cases}}\)(vô nghiệm) hoặc \(\hept{\begin{cases}x=\frac{1-2m}{m+4}\\mx^2-x=-2\end{cases}}\)(điều kiện m\(\ne-4\)) <=>m(\(\frac{1-2m}{m+4}\))2-\(\frac{1-2m}{m+4}\)=-2 <=> m(1-2m)2-(1-2m)(m+4)=-2(m+4)2 <=> 4m3-4m2+m-m+2m2-4+8m=-2m2-16m-32 <=> 4m3+24m+28=0

<=> (m+1)(4m2-4m+28)=0 <=>m+1=0 (vì 4m2-4m+28=(2m-1)2+27>0) <=> m=-1 (thỏa mãn m\(\ne-4\))

Vậy m=-1

22 tháng 8 2020

Để phương trình thứ nhất có nghiệm thì :

 \(m^2+4.2\ge0\Leftrightarrow m^2+8\ge0\)*đúng với mọi m*

Để phương trình thứ hai có nghiệm thì :

\(1-4.2.m\ge0\Leftrightarrow1-8m\ge0\Leftrightarrow m\le\frac{1}{8}\)

Vậy với \(m\le\frac{1}{8}\)thì phương trình có nghiệm

23 tháng 8 2020

Mình tìm được m=-1

Đặt \(x^2=y\ge0\)Khi đó hệ trở thành \(\hept{\begin{cases}mx+2y=1\\-x+my=-2\end{cases}}\)

Hệ luôn có nghiệm \(\hept{\begin{cases}x=\frac{m+4}{m^2+2}\\y=\frac{1-2m}{m^2+2}\ge0\left(m\le\frac{1}{2}\right)\end{cases}}\)

Ta có \(x^2=y\Leftrightarrow\left(\frac{m+4}{m^2+2}\right)^2=\frac{1-2m}{m^2+2}\)

\(\Leftrightarrow\left(m+1\right)\left(m^2-m+7\right)=0\Leftrightarrow m=-1\)

15 tháng 4 2020

đk m ở đầu tiên là m>-9 và ra kq m=-8 nhé

15 tháng 4 2020

tìm đk để pt có 2 nghiệm không âm mới đúng nha