\(y=mx^2-2\left(m-15\right)x+3-m\)

đồng biến...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 1 2022

TH1: \(m=0\Rightarrow y=30x+3\) đồng biến trên R (thỏa mãn)

TH2: \(m>0\Rightarrow\) hàm đồng biến trên \(\left(\dfrac{m-15}{m};+\infty\right)\)

Hàm đồng biến trên (2;9) khi \(\dfrac{m-15}{m}\le2\Rightarrow m\ge-15\Rightarrow m>0\)

TH3: \(m< 0\Rightarrow\) hàm đồng biến trên \(\left(-\infty;\dfrac{m-15}{m}\right)\)

Hàm đồng biến trên (2;9) khi \(\dfrac{m-15}{m}\ge9\)

\(\Rightarrow m-15\le9m\Rightarrow-\dfrac{15}{8}\le m< 0\)

Vậy \(m\ge-\dfrac{15}{8}\)

10 tháng 1 2021

\(y=\left(m-1\right)x^2-2mx+m+2\)(1)

+) Nếu \(m-1=0\Leftrightarrow m=1\)thì :

(1) \(\Leftrightarrow y=-2x+3\)là hàm số bậc nhất có hệ số góc \(-2< 0\Rightarrow\)hàm số nghịch biến trên \(R\)

=> Hàm số nghịch biến trên \(\left(-\infty;2\right)\)

Vậy khi \(m=1\)hàm số nghịch biến trên \(\left(-\infty;2\right)\)(2)

+) Nếu \(m-1\ne0\Leftrightarrow m\ne1\)thì (1) là hàm số bậc hai

(1) nghịch biến trên \(\left(-\infty;2\right)\)thì đồ thị h/s có bề lõm hướng lên trên

\(\Rightarrow\hept{\begin{cases}a=m-1>0\\-\frac{b}{2a}\ge2\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\\frac{2m}{2\left(m-1\right)}\ge2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\)

\(\Rightarrow1< m\le2\)\(\Leftrightarrow\hept{\begin{cases}m>1\\m-2\left(m-1\right)\ge0\Leftrightarrow\hept{\begin{cases}m>1\\m\le2\end{cases}}\end{cases}}\)(3)

Từ (2) và (3) suy ra hàm số nghịch biến trên \(\left(-\infty;2\right)\)thì \(1\le m\le2\)

27 tháng 10 2019

Hàm số \(y=-x^2+2mx+1\) có  \(a=-1< 0;-\frac{b}{2a}=m\)nên đồng biến trên \(\left(-\infty;m\right)\)

Do đó để hàm số đồng biến trên khoảng \(\left(-\infty;3\right)\)thì ta phải có \(\left(-\infty;3\right)\subset\left(-\infty;m\right)\Leftrightarrow m\ge3.\)

ĐKXĐ

\(mx^4+mx^3+\left(m+1\right)x^2+mx+1\)

\(=\left(mx^4+mx^3+mx^2+mx\right)+\left(x^2+1\right)\)

=\(mx\left(x^3+x^2+x+1\right)+\left(x^2+1\right)\)

\(=mx\left(x+1\right)\left(x^2+1\right)+\left(x^2+1\right)\)

\(=\left(x^2+1\right).\left[mx\left(x+1\right)+1\right]>0\left(\forall x\right)\)

\(=>mx^2+mx+1>0\left(\forall x\right)\)

\(=>PT\hept{\begin{cases}mx^2+mx+1=0\left(zô\right)nghiệm\forall x\\m>0\end{cases}}\)

\(\hept{\begin{cases}\Delta< 0\\m>0\end{cases}=>\hept{\begin{cases}m^2-4m< 0\\m>0\end{cases}=>\hept{\begin{cases}m\left(m-4\right)< 0\\m>0\end{cases}=>0< m< 4}}}\)

=> m có 3 giá trị là 1,2,3 nha

5 tháng 4 2020

https://olm.vn/hoi-dap/detail/249896752542.html?pos=586036211459

giúp mk cả câu này