K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Đặt  \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}\Rightarrow S^2\ge4P}\)    , ta có:

\(\hept{\begin{cases}S+P=a+1\\SP=a\end{cases}}\) nên để hệ có nghiệm duy nhất thì 

\(\left(a+1\right)^2\ge4a\)  \(\Leftrightarrow\)  \(a=1\)

2 tháng 7 2023

\(x-y=2\Rightarrow y=x-2\). Thay vào pt đầu tiên, ta có:

\(\left(m-1\right)x+2\left(x-2\right)=m+1\) 

\(\Leftrightarrow\left(m+1\right)x=m+5\)

 Ta thấy \(m\) không thể bằng -1 được vì khi đó \(m+5=0\Leftrightarrow m=-5\), trong khi \(m\) không thể mang 2 giá trị cùng một lúc. Vì vậy, \(m\ne-1\).  \(\Rightarrow x=\dfrac{m+5}{m+1}\)

\(\Rightarrow y=x-2=\dfrac{m+5}{m+1}-2\) \(=\dfrac{3-m}{m+1}\).

Từ đó, ta có \(xy=\dfrac{\left(m+5\right)\left(3-m\right)}{\left(m+1\right)^2}\).

Rõ ràng \(\left(m+1\right)^2>0\) nên để \(xy>0\) thì \(\left(m+5\right)\left(3-m\right)>0\) \(\Leftrightarrow-5< m< 3\)

2 tháng 7 2023

Kết luận: Để hpt đã cho có nghiệm duy nhất \(x,y\) thỏa mãn ycbt thì\(-5< m< 3\) và \(m\ne-1\)

25 tháng 3 2020

khó quá nhờ

23 tháng 3 2020

a) Thay 1 vào m, ta có:

\(\hept{\begin{cases}x+1y=1+1\\1x-y=3\times1-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x+1y=2\\x=2+y\end{cases}}\)

Thế giá trị đã cho vào phương trình:\(2+y+1y=2\)

\(\Leftrightarrow2+2y=2\)

\(\Leftrightarrow2y=0\Rightarrow y=0\)

Thay giá trị đó vào phương trình:\(x=2+0\Rightarrow x=2\)