Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CÁC BÀI NÀY ĐỀU GIẢI THEO TÍNH CHẤT DÃY TỈ SỐ BẮNG NHAU
a) ta có: 2a = 3b; 5b = 7c
\(\Rightarrow\frac{a}{3}=\frac{b}{2};\frac{b}{7}=\frac{c}{5}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}\left(1\right);\frac{b}{14}=\frac{c}{10}\left(2\right)\)
VẾ (1) nhân cả 2 số với\(\frac{1}{7}\); VẾ (2) nhân cả hai số với \(\frac{1}{2}\)
\(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU, TA CÓ:
\(\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a+5c-7b}{63+50-98}=\frac{30}{15}=2\)
PHẦN SAU TỰ LÀM^-^
c) ÁP DỤNG T/C DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{a}{3}=\frac{b+1}{4}=\frac{c+2}{5}=\frac{a-b-1+c+2}{3-4+5}=\frac{a-b+c+1}{4}=\frac{-17}{4}\)
PHẦN SAU TỰ LÀM^-^
Ta có: \(2a=3b\Rightarrow\frac{a}{3}=\frac{b}{2}\left(1\right)\)
\(5b=7c\Rightarrow\frac{b}{7}=\frac{c}{5}\left(2\right)\)
Từ 1 và 2 \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
\(\Rightarrow\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{-30}{15}=-2\)
\(\Rightarrow\frac{a}{21}=-2\Rightarrow a=-42\)
\(\frac{b}{14}=-2\Rightarrow b=-28\)
\(\frac{c}{10}=-2\Rightarrow c=-20\)
Vậy \(a+b+c=-42-28-20=-90\)
Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{b+a+d}=\frac{d}{c+b+a}\)
\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{b+a+d}+1=\frac{d}{c+b+a}+1\)
\(\Rightarrow\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{b+a+d}=\frac{a+b+c+d}{c+b+a}\)
Mà a+b+c+d khác 0
=> b+c+d = a+c+d = b+a+d = c+b+a
=> b = a = c = d
Ta có:
\(P=\frac{2a+5b}{3c+4d}-\frac{2b+5c}{3d+4a}-\frac{2c+5d}{3a+4b}-\frac{2d+5a}{3c+4b}\)
\(P=\frac{2a+5a}{3a+4a}-\frac{2b+5b}{3b+4b}-\frac{2c+5d}{3c+4c}-\frac{2d+5d}{3d+4d}\)
\(P=\frac{7a}{7a}-\frac{7b}{7b}-\frac{7c}{7c}-\frac{7d}{7d}\)
\(P=1-1-1-1=-2\)
a/
Đặt $\frac{a-1}{2}=\frac{b-2}{3}=\frac{c-3}{4}=k$
$\Rightarrow a=2k+1; b=3k+2; c=4k+3$
Khi đó:
$3a+3b-c=50$
$\Rightarrow 3(2k+1)+3(3k+2)-(4k+3)=50$
$\Rightarrow 11k+6=50$
$\Rightarrow 11k=44\Rightarrow k=4$
Ta có:
$a=2k+1=2.4+1=9$
$b=3k+2=3.4+2=14$
$c=4k+3=4.4+3=19$
b/
$2a=3b; 5b=7c\Rightarrow \frac{a}{3}=\frac{b}{2}; \frac{b}{7}=\frac{c}{5}$
$\Rightarrow \frac{a}{21}=\frac{b}{14}=\frac{c}{10}$
Áp dụng TCDTSBN:
$\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}=\frac{3a-7b+5c}{63-98+50}=\frac{45}{15}=3$
$\Rightarrow a=21.3=63; b=14.3=42; c=10.3=30$
Câu a thiếu đề nhé, -3a+b= bao nhiêu thế bạn?
b/ Theo đề ta có:
\(\frac{a}{7}=\frac{b}{4}\Rightarrow\frac{a}{14}=\frac{b}{8}\); \(\frac{b}{8}=\frac{c}{5}\)
=> \(\frac{a}{14}=\frac{b}{8}=\frac{c}{5}\)
a/d tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{14}=\frac{b}{8}=\frac{c}{5}=\frac{10a}{140}=\frac{5b}{40}=\frac{c}{5}=\frac{10a-5b+c}{140-40+5}=\frac{100}{105}=\frac{20}{21}\)
=> \(\left\{{}\begin{matrix}a=\frac{20}{21}\cdot14=\frac{40}{3}\\b=\frac{20}{21}\cdot8=\frac{160}{21}\\c=\frac{20}{21}\cdot5=\frac{100}{21}\end{matrix}\right.\)
vậy...