Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m khác 0
tính \(\Delta\)
tìm đk m để\(\Delta\) lớn hơn 0
phân tích \(\left(x_1+x_2\right)^2-2x_1x_2-2\)
Viết lại đề : \(x^2-2mx+m^2-1=0\left(a=1;b=-2m;c=m^2-1\right)\)( 1 )
a, Thay m = 1 vào pt (1) ta đc
\(x^2-2.1x+1^2-1=0\Leftrightarrow x^2-2x=0\)
\(\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
b, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
Tương ứng vs : \(\left(2m\right)^2-4\left(m^2-1\right)=4m^2-4m^2+4=4>0\)(EZ>33)
c, Áp dụng hệ thức Vi et ta có : \(x_1+x_2=2m;x_1x_2=m^2-1\)
Theo bài ra ta có : \(x_1+x_2=12\)Thay vào ta đc
\(\Leftrightarrow2m=12\Leftrightarrow m=6\)
a)
XÉT \(\Delta=4\left(m+1\right)^2-8m=4m^2+8m+4-8m=4m^2+4\ge0+4=4>0\)
=> \(\Delta>0\)
=> PT CÓ 2 NGHIỆM PHÂN BIỆT VỚI MỌI GIÁ TRỊ m.
b)
\(\Rightarrow\hept{\begin{cases}x_1+x_2=-2\left(m+1\right)\left(1\right)\\x_1.x_2=2m\left(2\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow x_1^2+x_2^2+2x_1x_2=4\left(m+1\right)^2\)
<=> \(x_1^2+x_2^2+4m=4m^2+8m+4\)
<=> \(x_1^2+x_2^2=4m^2+4m+4=4m^2+4m+1+3=\left(2m+1\right)^2+3\ge3\forall m\)
=> \(x_1^2+x_2^2\ge3\)
DẤU "=" XẢY RA <=> \(\left(2m+1\right)^2=0\Leftrightarrow m=-\frac{1}{2}\)
a) \(\Delta^'=\left(m+1\right)^2-2m=m^2+2m+1-2m=m^2+1>0\forall m\)
Vậy phương trình có 2 nghiệm phân biệt \(x_1;x_2\forall m\)
b) Theo định lý Vi-et: \(\hept{\begin{cases}x_1+x_2=-2\left(m+1\right)=-2m-2\\x_1x_2=2m\end{cases}}\)
\(\Rightarrow x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=\left(-2m-2\right)^2-2.2m\)
\(=4m^2+8m+4-4m\)
\(=4m^2+4m+4=\left(2m+1\right)^2+3\ge3\)
Dấu "=" xảy ra khi \(m=\frac{-1}{2}\)
\(\Rightarrow\hept{\begin{cases}x_1+x_2=-1\\x_1x_2=-1\end{cases}}\)
Đến đây thì bạn tìm ra \(x_1;x_2\)là nghiệm của \(x^2+x-1=0\)và kết luận GTNN.
Để pt có hai nghiệm pb\(\Leftrightarrow\Delta>0\Leftrightarrow m^2-4>0\) \(\Leftrightarrow\left(m-2\right)\left(m+2\right)>0\)\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< -2\end{matrix}\right.\)
Theo định lí viet có: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=1\end{matrix}\right.\)
\(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)
\(\Leftrightarrow x_1^2+2x_1+1+x_2^2+2x_2+1=2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow m^2-2+2m=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-1+\sqrt{3}\left(L\right)\\m=-1-\sqrt{3}\left(N\right)\end{matrix}\right.\)
Vậy \(m=-1-\sqrt{3}\)