K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

\(A=-\left(x^2-4x-3\right)=-\left(x^2-4x+4-7\right)=7-\left(x-2\right)^2\le7\Rightarrow A_{max}=7\Leftrightarrow x-2=0\Rightarrow x=2\)

1 tháng 7 2016

mk tra loi cau b con lai bn dua vao de giai nhé

b. x - x^2 = -(x^2 - x)

   = -[ (x^2 - 2.x.1/2 +(1/2)^2-(1/2)^2

   = -[(x-1/2)^2 - (1/2)^2]

   = -(x-1/2)^2 + 1/4 = 1/4 - (x-1/2)^2

Vì (x-1/2)^2 >=0 nên 1/4 - (x-1/2)^2 <=1/4 với mọi x

Do đó đa thức đã cho có gtln la 1/4 tại x = 1/2

( ý 2 là thêm bớt hạng tử nha)

30 tháng 8 2017

x^2 -6x +10 = x^2 -2.x.3 +3^2 +1 = (x-3)^2 +1 
Ma (x-3)^2 >=0 <=> (x-3)^2 +1 >=1>0 (voi moi x) 
b) 4x - x^2 -5 = -(x^2 -4x +5) =-[(x^2 -4x +4)+1] = -[(x-2)^2 +1] 
Ma (x+2)^2 >=0 <=> (x-2)^2 +1 >=1 <=> -[(x-2)^2 +1] <=-1 => -[(x-2)^2 +1] <0 
2) a) P= x^2 -2x +5 = x^2 -2x +1 +4 = (x-1)^2 +4 
Ta co: (x-1)^2 >=0 <=> (x-1)^2 +4 >=4 
Vay gia tri nho nhat P=4 khi x=1 
b) Q= 2x^2 -6x = 2(x^2 -3x) = 2(x^2 - 2.x.3/2 + 9/4 -9/4)= 2[(x-3/2)^2 -9/4] 
Ta co: (x-3/2)^2 >=0 <=>(x-3/2)^2 -9/4 >= -9/4 <=> 2[(x-3/2)^2 -9/4] >= -9/2 
Vay gia tri nho nhat Q= -9/2 khi x= 3/2 
c) M= x^2 +y^2 -x +6y +10 = (x^2 -2.x.1/2 + 1/4) +(y^2 +2.y.3+9)+3/4 
= ( x-1/2)^2 + (y+3)^2 +3/4 
M>= 3/4 
Vay GTNN cua M = 3/4 khi x=1/2 va y=-3 
3)a) A= 4x - x^2 +3 = -(x^2 -4x -3) = -( x^2 -4x+4 -7) =-[(x-2)^2 -7] 
Ta co: (x-2)^2>=0 <=> (x-2)^2 -7 >=-7 <=> -[(x-2)^2 -7] <=7 
Vay GTLN A=7 khi x=2 
b) B= x-x^2 = -(x^2 -2.x.1/2+1/4-1/4) = -[(x-1/2)^2 -1/4] 
GTLN B= 1/4 khi x=1/2 
c) N= 2x - 2x^2 -5 =-2( x^2 -x+5/2) = -2(x^2 - 2.x.1/2 +1/4 +9/4) 
= -2[(x-1/2)^2 +9/4] 
GTLN N= -9/2 khi x=1/2

6 tháng 6 2017

\(a,4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)Vậy Max A= 7 khi (x-2)2=0 \(\Rightarrow x=2\)

\(B=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)Vậy Max B=\(\dfrac{1}{4}\) khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

\(N=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{39}{8}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{39}{8}\le\dfrac{-39}{8}\)Vậy Max N = \(\dfrac{-39}{8}\) khi \(-2\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

4 tháng 9 2016

a/ \(M=x^2+y^2-x+6y+10=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10-\frac{1}{4}-9\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Suy ra Min M = 3/4 <=> (x;y) = (1/2;-3)

b/

1/ \(A=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

Suy ra Min A = 7 <=> x = 2

2/ \(B=x-x^2=-\left(x^2-x+\frac{1}{4}\right)+\frac{1}{4}=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\)

Suy ra Min B = 1/4 <=> x = 1/2

3/ \(N=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-5+\frac{1}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\)

\(\ge-\frac{9}{2}\)

Suy ra Min N = -9/2 <=> x = 1/2

9 tháng 8 2018

a) \(A=x^2-2x+7=x^2-2x+1+6=\left(x-1\right)^2+6\)

Vì \(\left(x-1\right)^2\ge0\left(\forall x\right)\Rightarrow A=\left(x-1\right)^2+6\ge6\)

Dấu "=" xảy ra <=> x-1 = 0 <=> x = 1

Vậy Amin = 6 khi và chỉ khi x = 1

b) Ta có: \(B=2x^2-6x=2\left(x^2-3x\right)=2\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{9}{2}\)

                                                \(=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge\frac{-9}{2}\)

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy Bmin = -9/2 khi và chỉ khi x = 3/2

c) \(C=5+4x-x^2=-\left(x^2-4x-5\right)=-\left(x^2-4x+4\right)+9\)

                                                          \(=-\left(x-2\right)^2+9=9-\left(x-2\right)^2\le9\)

Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2

Vậy Cmax = 9 khi và chỉ khi x = 0

d) Tương tự

28 tháng 7 2016

a) Giá trị lớn nhất:

\(A=2x-3x^2-4=-3\left(x^2-\frac{2}{3}x+\frac{4}{3}\right)=-3\left[x^2-2.x.\frac{1}{3}+\left(\frac{1}{3}\right)^2+\frac{35}{9}\right]=-3\left(x-\frac{1}{3}^2\right)-\frac{35}{3}\)

Vì \(\left(x-\frac{1}{3}\right)^2\ge0\left(x\in R\right)\)

Nên \(-3\left(x-\frac{1}{3}\right)^2\le0\left(x\in R\right)\)

do đó \(-3\left(x-\frac{1}{3}\right)^2-\frac{35}{3}\le-\frac{35}{3}\left(x\in R\right)\)

Vậy \(Max_A=-\frac{35}{3}\)khi \(x-\frac{1}{3}=0\Rightarrow x=\frac{1}{3}\)

\(B=-x^2-4x=-\left(x^2+4x\right)=-\left(x^2+2.x.2+2^2-2^2\right)=-\left(x+2\right)^2+4\)

Vì \(\left(x+2\right)^2\ge0\left(x\in R\right)\)

nên \(-\left(x+2\right)^2\le0\left(x\in R\right)\)

do đó \(-\left(x+2\right)^2+4\le4\left(x\in R\right)\)

Vậy \(Max_B=4\)khi \(x+2=0\Rightarrow x=-2\)

b) Giá trị nhỏ nhất 

\(A=x^2-2x-1=x^2-2.x.+1-2=\left(x-1\right)^2-2\)

Vì \(\left(x-1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(x-1\right)^2-2\ge-2\left(x\in R\right)\)

Vậy \(Min_A=-2\)khi \(x-1=0\Rightarrow x=1\)

\(B=4^2+4x+5=\left(2x\right)^2+2.2x.1+1+4=\left(2x+1\right)^2+4\)

vì \(\left(2x+1\right)^2\ge0\left(x\in R\right)\)

nên \(\left(2x+1\right)^2+4\ge4\left(x\in R\right)\)

Vậy \(Min_B=4\)khi \(2x+1=0\Rightarrow x=-\frac{1}{2}\)

31 tháng 10 2020

Bài 1.

Ta có : B = ( x + 2 )2 + ( x - 2 )2 - 2( x + 2 )( x - 2 )

= [ ( x + 2 ) - ( x - 2 ) ]2

= ( x + 2 - x + 2 )2

= 42 = 16

=> B không phụ thuộc vào x

Vậy với x = -4 thì B vẫn bằng 16

Bài 2.

4x2 - 4x + 1 = ( 2x )2 - 2.2x.1 + 12 = ( 2x - 1 )2

Bài 3.

Ta có : \(A=\frac{3}{2}x^2+2x+3\)

\(=\frac{3}{2}\left(x^2+\frac{4}{3}x+\frac{4}{9}\right)+\frac{7}{3}\)

\(=\frac{3}{2}\left(x+\frac{2}{3}\right)^2+\frac{7}{3}\ge\frac{7}{3}\forall x\)

Dấu "=" xảy ra khi x = -2/3

=> MinA = 7/3 <=> x = -2/3