\(\frac{\left(m-1\righ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 10 2020

\(y\left(x+m+2\right)=mx-x+m+2\)

\(\Leftrightarrow\left(xy+2y+x-2\right)+m\left(y-x-1\right)=0\)

\(\Rightarrow\left\{{}\begin{matrix}y-x-1=0\\xy+2y+x-2=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y=x+1\\xy+2y+x-2=0\end{matrix}\right.\)

\(\Rightarrow x\left(x+1\right)+2\left(x+1\right)+x-2=0\)

\(\Leftrightarrow x^2+4x=0\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=-4\Rightarrow y=-3\end{matrix}\right.\)

Vậy đồ thị đi qua 2 điểm: \(A\left(0;1\right);B\left(-4;-3\right)\)

NV
25 tháng 10 2020

Câu 2 này đề đúng chứ?

\(y=2m^2x+2x+2m^2-m-4\)

\(\Leftrightarrow m^2\left(2x+2\right)+m.\left(-1\right)+\left(2x-y-4\right)=0\)

Điểm cố định là đồ thị hàm số luôn đi qua thỏa mãn:

\(\left\{{}\begin{matrix}2x+2=0\\-1=0\\2x-y-4=0\end{matrix}\right.\) (không tồn tại x;y thỏa mãn)

Vậy ko tồn tại điểm cố định mà ĐTHS luôn đi qua

NV
25 tháng 10 2020

\(\overrightarrow{BI}=3\overrightarrow{CI}=3\left(\overrightarrow{CB}+\overrightarrow{BI}\right)\Rightarrow\overrightarrow{BI}=\frac{3}{2}\overrightarrow{BC}\)

\(\overrightarrow{AJ}=\frac{2}{3}\overrightarrow{AC}\) ; \(\overrightarrow{AK}=\frac{1}{4}\overrightarrow{AB}\)

Vậy:

\(\overrightarrow{AI}=\overrightarrow{AB}+\overrightarrow{BI}=\overrightarrow{AB}+\frac{3}{2}\overrightarrow{BC}\) (1)

\(\overrightarrow{JK}=\overrightarrow{JA}+\overrightarrow{AK}=-\frac{2}{3}\overrightarrow{AC}+\frac{1}{4}\overrightarrow{AB}=-\frac{2}{3}\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\frac{1}{4}\overrightarrow{AB}\)

\(\overrightarrow{JK}=-\frac{5}{12}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{BC}\Rightarrow\frac{12}{5}\overrightarrow{JK}=-\overrightarrow{AB}-\frac{8}{5}\overrightarrow{BC}\) (2)

Cộng vế với vế (1) và (2):

\(\overrightarrow{AI}+\frac{12}{5}\overrightarrow{JK}=-\frac{1}{10}\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{BC}=-10\overrightarrow{AI}-24\overrightarrow{JK}\)

11 tháng 8 2015

a) Với \(x\in\left[0;1\right]\) => x  - 2 < 0 => |x - 2| = - (x -2)

Khi đó, \(f\left(x\right)=2\left(m-1\right)x+\frac{m\left(x-2\right)}{-\left(x-2\right)}=2\left(m-1\right)x-m\)

Để f(x) < 0 với mọi \(x\in\left[0;1\right]\) <=> \(2\left(m-1\right)x-m<0\)  (*)  với mọi \(x\in\left[0;1\right]\)

+) Xét m - 1 > 0 <=> m > 1 

(*) <=> \(x<\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\ge1\) <=> 2(m -1) \(\le\)m <=> m \(\le\) 2 <=> m \(\le\) 2

Kết hợp điều kiện m > 1 =>1 <  m \(\le\) 2

+) Xét m = 1 thì (*) <=> -1 < 0 luôn đúng => m =1 thỏa mãn

+) Xét m - 1 < 0 <=> m < 1

(*) <=> \(x>\frac{m}{2\left(m-1\right)}\). Để (*) đúng với mọi \(x\in\left[0;1\right]\) <=> \(\frac{m}{2\left(m-1\right)}\le0\) <=> m \(\ge\) 0 (do m< 1 ). Kết hợp m < 1 => 0 \(\le\) m < 1

Kết hợp các trường hợp : Với  0 \(\le\)\(\le\) 2 thì .....

b)  Hoành độ giao điểm của đò thị hàm số với Ox là nghiệm của Phương trình : \(2\left(m-1\right)x+\frac{m\left(x-2\right)}{\left|x-2\right|}=0\) (1)

Đồ thị hàm số cắt Ox tại điểm có hoành độ xo thuộc (1;2) => x< 2 => |x- 2| = - (x- 2)

xo là nghiệm của (1) <=> \(2\left(m-1\right)x_o+\frac{m\left(x_o-2\right)}{\left|x_o-2\right|}=0\) <=> \(2\left(m-1\right)x_o-m=0\) 

+) Xét m \(\ne\) 1 thì (2)<=> \(x_o=\frac{m}{2\left(m-1\right)}\). Vì 1 < x< 2 nên \(1<\frac{m}{2\left(m-1\right)}<2\) <=> \(\begin{cases}\frac{m}{2\left(m-1\right)}-1>0\\\frac{m}{2\left(m-1\right)}-2<0\end{cases}\) <=> \(\begin{cases}\frac{-m+2}{2\left(m-1\right)}>0\left(a\right)\\\frac{-3m+4}{2\left(m-1\right)}<0\left(b\right)\end{cases}\) 

Giải (a) <=> 1 < m < 2

Giải (b) <=> m < 1 hoặc m > 4/3

Kết hợp nghiệm của (a) và (b) => 4/3 < m < 2

+) Xét m = 1 thì (2) <=> -1 = 0 Vô lí

Vậy Với 4/3 < m < 2 thì đồ thị hàm số cắt Ox tại điểm thuộc (1;2)

 

7 tháng 12 2016

Toán lớp 9.

31 tháng 8 2019

Đáp án C

13 tháng 4 2017

a)

f(x) giao trục tại hai Điểm có hoành độ x1=-4; x2=-2

g(x) giao trục hoành duy nhất một điểm hoành độ x=m/2

Ôn tập chương IV

b) f(x) >g(x) => điểm m/2 phải trong khoảng (-4,-2)

\(-4< \dfrac{m}{2}< -2\Leftrightarrow-8< m< -4\)