\(\frac{1}{0,abc}=a+b+c\)

 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2017

Ta chỉ việc lấy 1 chia cho từng số trong phạm vi từ 1 - 9

 Ta có: 1 : 9 = 0,111...

1 : 8 = 0.125

1 : 7 = 0,1428571

  . ... bạn thử với các số còn lại. Xem số nào có ba chữ số ở phần thập phân và khác 0 thì chọn.

Ta được tổng của a + b + c = 8. Suy ra:

a là: 1

b là: 2

c là 5

23 tháng 4 2017

Từ đề bài, ta có: 1 : (a + b + c) = 0,abc (a,b,c khác 0)

( bài này đâu phải lớp 5, mình nghĩ từ lớp 6 trở lên chứ! Nếu sai thì thôi nha! Đợi tí mình post tiếp cho!)

^_^

25 tháng 6 2015

=> 0,abc x (a+b+c) = 1

   1000 x 0.abc x (a+b+c) = 1000

    abc x (a + b + c) = 1000

Vì abc là số có 3 chữ số nên abc nhỏ nhất bằng 100

=> a+ b + c lớn nhất bằng : 1000 : 100 = 10. 

Mà 1000 chia hết cho (a+ b+ c) nên a + b + c = 1; 2;4;5;8 hoặc 10

+) nếu a+ b + c = 1 thì abc = 1000 (Loại)

+) Nếu a+ b + c = 2 thì abc = 1000 : 2 = 500 ( Loại vì: 5 + 0 + 0 = 5 > 2)

+) Nếu a+ b +c = 4 thì abc = 1000 : 4 = 250 (Loại vì 2 + 5 + 0 = 7 > 4)

+) Nếu a + b + c = 5 thì abc = 1000 : 5 = 200 (Loại )

+) Nếu a + b + c = 8 thì abc = 1000 : 8 = 125 (Thỏa mãn)

Vậy a = 1; b = 2; c = 5

8 tháng 10 2019

A =1; b=2; c = 5 nha bạn

18 tháng 7 2018

dài lam

18 tháng 7 2018

thì cứ giải đi mk cho 3 k

16 tháng 4 2018

\(\frac{a}{b}=1\frac{1}{4}=\frac{5}{4}\)

số a là 

18/7 / (5+4)*5=10/7

số b là 

\(\frac{18}{7}-\frac{10}{7}=\frac{8}{7}\)

đ/s

25 tháng 6 2015

Không tồn tại các số a,b,c

14 tháng 2 2017

abc=125.Mình chắc chắn luôn

31 tháng 7 2020

\(\frac{2x-4,36}{0,125}=0,25.42,9-11,7.0,25+0,25.0,8\)

\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.\left(42,9-11.7+0,8\right)\)

\(\Leftrightarrow\frac{2x-4,36}{0,125}=0,25.32\)

\(\Leftrightarrow\frac{2x-4,36}{0,125}=8\)

\(\Leftrightarrow2x-4,36=1\)

\(\Leftrightarrow2x=5,36\)

\(\Leftrightarrow x=2,68\)

b) \(N=\frac{1}{1.5}+\frac{1}{5.10}+\frac{1}{10.15}+\frac{1}{15.20}+...+\frac{1}{2005.2010}\)

\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\right)\)

\(\Leftrightarrow N=\frac{1}{5}\left(1-\frac{1}{2010}\right)\)

\(\Leftrightarrow N=\frac{1}{5}.\frac{2009}{2010}=\frac{2009}{10050}\)

Bài 1:

a)\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot42,9-11,7\cdot0,25+0,25\cdot0,8\)

\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot\left(42,9-11,7+0,8\right)\)

\(\frac{2\cdot x-4,36}{0,125}=0,25\cdot32\)

\(\frac{2\cdot x-4,36}{0,125}=8\)

\(2\cdot x-4,36=8\cdot0,125\)

\(2\cdot x-4,36=1\)

\(2\cdot x=1+4,36\)

\(2\cdot x=5,36\)

\(x=\frac{5,36}{2}=2,68\)

b) \(N=\frac{1}{1\cdot5}+\frac{1}{5\cdot10}+\frac{1}{10\cdot15}+\frac{1}{15\cdot20}+...+\frac{1}{2005\cdot2010}\)

\(4N=\frac{4}{1\cdot5}+\frac{4}{5\cdot10}+\frac{4}{10\cdot15}+\frac{4}{15\cdot20}+...+\frac{4}{2005\cdot2010}\)

\(4N=1-\frac{1}{5}+\frac{1}{5}-\frac{1}{10}+\frac{1}{10}-\frac{1}{15}+\frac{1}{15}-\frac{1}{20}+...+\frac{1}{2005}-\frac{1}{2010}\)

\(4N=1-\frac{1}{2010}=\frac{2009}{2010}\)

\(N=\frac{2009}{2010}\div4=\frac{2009}{8040}\)

Bài 2:

a) ( x + 5,2 ) : 3,2 = 4,7 ( dư 0,5 )

\(x+5,2=4,7\cdot3,2+0,5\)

\(x+5,2=15,54\)

\(x=15,54-5,2=10,34\)

b)\(A=\frac{4047991-2010\cdot2009}{4050000-2011\cdot2009}\)

\(A=\frac{4047991-2010\cdot2009}{4050000-2009-2010\cdot2009}\)

\(A=\frac{4047991-2010\cdot2009}{4047991-2010\cdot2009}=1\)

Bài 3:

a) \(104,5\cdot x-14,1\cdot x+9,6\cdot x=25\)

\(x\cdot\left(104,5-14,1+9,6\right)=25\)

\(x\cdot100=25\)

\(x=\frac{25}{100}=\frac{1}{4}=0,25\)

b) \(T=\frac{2009\cdot2010+2000}{2011\cdot2010-2020}\)

\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+4020-2020}\)

\(T=\frac{2009\cdot2010+2000}{2009\cdot2010+2000}=1\)

25 tháng 3 2018

BĐT\(\Leftrightarrow\frac{abc}{a^3\left(b+c\right)}+\frac{abc}{b^3\left(a+c\right)}+\frac{abc}{c^3\left(a+b\right)}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(\Leftrightarrow\frac{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}{\frac{1}{b}+\frac{1}{c}.\frac{1}{a}+\frac{1}{c}.\frac{1}{a}+\frac{1}{b}}\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\). Áp dụng BĐT: AM-GM ta có:

\(\frac{a^2}{b+c}+\frac{b+c}{4}\ge2\sqrt{\frac{a^2}{b+c}.\frac{b+c}{4}}=a\)

\(\frac{b^2}{a+b}+\frac{a+c}{4}\ge2\sqrt{\frac{b^2}{a+b}.\frac{a+b}{4}}=b\)

\(\frac{c^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{c^2}{a+b}+\frac{a+b}{4}}=c\)

Cộng theo vế 3 BĐT trên ta có:

\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

hay \(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{3}{2}\)

Dấu bằng = xảy ra khi a = b = c = 1

5 tháng 8 2020

Đặt  \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\Rightarrow xyz=1;x>0;y>0;z>0\)

Ta cần chứng minh bất đẳng thức sau : \(A=\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{3}{2}\)

Sử dụng bất đẳng thức Bunhiacopxki cho 2 bộ số :

\(\left(\sqrt{y+z};\sqrt{z+x};\sqrt{x+y}\right);\left(\frac{x}{\sqrt{y+z}};\frac{y}{\sqrt{z+x}};\frac{z}{\sqrt{x+y}}\right)\)

Ta có : \(\left(x+y+z\right)^2\le\left(x+y+z+x+y+z\right)A\)

\(\Rightarrow A\ge\frac{x+y+z}{2}\ge\frac{3\sqrt[3]{xyz}}{2}=\frac{3}{2}\left(Q.E.D\right)\)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z=1\Leftrightarrow a=b=c=1\)

23 tháng 7 2015

a = 1

b = 2

c = 5

chínk xác 100%