\(\overline{abbc=ab.ac.7}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2019

                            Gọi : ab = m ; ac = n ; bc = d ( m,n,d \(\inℕ^∗\))

Ta có : 100m + d = m . n . 7

=> \(\frac{100m+d}{m}=n.7\)(1)

Vì 7n là số tự nhiên => \(100m+d⋮m\Rightarrow d⋮m\Rightarrow d=mk\left(k\inℕ^∗,k< 10\right)\)

Thay vào (1) ta được : \(\frac{100m+mk}{m}=7n\Rightarrow\frac{m\left(100+k\right)}{m}=7n\Rightarrow100+k=7n\)

Vì \(100< 100+k< 110\)mà \(7n⋮7\Rightarrow100+k⋮7\Rightarrow100+k=105\Rightarrow n=\frac{105}{7}=15\)

=> 1bb5 = 1b . 105 

=> 100. 1b + b5 =1b . 100 + 1b . 5 

=> b5 = 1b . 5 => 10b + 5 = 50 + 5b => 5b = 45 => b = 9 

Vậy a = 1 ; b = 9 và c = 5

28 tháng 5 2018

a) Theo bài ra, ta có:

        \(\overline{abbc}=\overline{ab}.\overline{ac}.7\)

\(\Rightarrow\overline{ab}.100+\overline{bc}=\overline{ab}.\overline{ac}.7\)

\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=\overline{ac}.7\)

Ta thấy : \(\frac{10}{90}\le\frac{\overline{bc}}{\overline{ab}}\le\frac{91}{10}\)

\(\Rightarrow100+\frac{10}{90}\le100+\frac{\overline{bc}}{\overline{ab}}\le100+\frac{91}{10}\)

\(\Rightarrow\frac{901}{9}\le100+\frac{\overline{bc}}{\overline{ab}}\le\frac{1091}{10}.\)

Ta thấy: \(\overline{ac}\in N\Rightarrow\overline{ac}.7\in N\)

Mà \(\overline{ac}.7⋮7\Rightarrow\overline{ac}.7=105\)

\(\Rightarrow\overline{ac}=105:7=15\Rightarrow a=1;c=5\)

\(\Rightarrow100+\frac{\overline{bc}}{\overline{ab}}=105\Rightarrow\frac{\overline{bc}}{\overline{ab}}=105-100=5\)

\(\Rightarrow\overline{bc}=5.\overline{ab}\Rightarrow b.10+c=50.a+5b\)

\(\Rightarrow5b+5=50\Rightarrow5b=50-5=45\)

\(\Rightarrow b=45:5=9.\)

                                  Vậy \(a=1;b=9;c=5.\)

b) Theo bài ra, ta có:

     \(A=\frac{1}{2}\left(7^{2012^{2015}}-3^{92^{94}}\right)\)

 Vì \(7>3;2012>92;2015>94\Rightarrow7^{2012^{2015}}>3^{92^{94}}\)      

\(\Rightarrow7^{2012^{2015}}-3^{92^{94}}\)là một số tự nhiên.

     \(2012\equiv0\left(mod4\right)\)

\(\Rightarrow2012^{2015}\equiv0\left(mod4\right)\)

\(\Rightarrow2012^{2015}=4m\left(m\in N\right)\)

\(\Rightarrow7^{2012^{2015}}=7^{4m}=\left(7^4\right)^m=\overline{...1}^m=\overline{...1}.\)

          \(92\equiv0\left(mod4\right)\)

\(\Rightarrow92^{94}\equiv0\left(mod4\right)\)

\(\Rightarrow92^{94}=4n\left(n\in N\right)\)

\(\Rightarrow3^{92^{94}}=3^{4n}=\left(3^4\right)^n=\overline{...1}^n=\overline{...1}.\)

Thay vào, ta được :

      \(A=\frac{1}{2}\left(\overline{...1}-\overline{...1}\right)\)

 \(\Rightarrow A=\frac{1}{2}\left(\overline{...0}\right)\)

\(\overline{...0}\)là một số tự nhiên chia hết cho 10 \(\Rightarrow\)nó chia hết cho 2

\(\Rightarrow\)\(A\)là một số tự nhiên có chữ số tận cùng là 0 hoặc 5 

\(\Rightarrow A⋮5.\)

Vậy A là một số tự nhiên chia hết cho 5.

\(\)

4 tháng 4 2018

Ta có \(\overline{abbc}=\overline{ab}.\overline{ac}.7^{\left(1\right)}\)

\(\Leftrightarrow100.\overline{ab}+\overline{bc}=7.\overline{ab}.\overline{ac}\Leftrightarrow\overline{ab}\left(7.\overline{ac}-100\right)=\overline{bc}\)

\(\Leftrightarrow7.\overline{ac}-100=\frac{bc}{ab}\)Vì \(0< \frac{bc}{ab}< 10\)nên \(0< 7.\overline{ac}-100< 10\)

\(\Leftrightarrow100< 7.\overline{ac}< 110\Leftrightarrow14< \frac{100}{7}< \overline{ac}< \frac{110}{7}< 16\).Vậy \(\overline{ac}=15\)

Thay (1) được \(\overline{1bb5}=\overline{1b}.15.7\Leftrightarrow1005+110b=1050+105.b\)

\(\Leftrightarrow5b=45\Leftrightarrow b=9\)

Vậy \(a=1,b=9,c=5\)

1 tháng 4 2018

Bấm vào câu hỏi tương tự đi bạn . 

Anh Lê Mạnh Tiến Đạt giải rồi đấy 

14 tháng 4 2016

Có abbc < 10.000 
=> ab.ac.7 < 10000 
=> ab.ac < 1429 
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0) 
=> a0 < 38 
=> a <= 3 
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại 
+)Với a = 2 ta có 
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1) 
=> a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10) 
=> 1c.7 < 110 => 1c < 16 => c < 6 
vậy c chỉ có thể = 5 
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105 
<=> 100.1b + b5 = 1b.105b 
<=> b5 = 5.1b 
<=> 10b + 5 = 5.(10+b) 
=> b = 9 

14 tháng 4 2016

abc=195

23 tháng 12 2018

Câu 1:

Ta có:

abbc < 10.000 
=> ab.ac.7 < 10000 
=> ab.ac < 1429 
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0) 
=> a0 < 38 
\(\Rightarrow a\le3\)
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại 
+)Với a = 2 ta có 
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1) 
=> a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
Có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
Lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10) 
=> 1c.7 < 110 => 1c < 16 => c < 6 
Vậy c chỉ có thể = 5 
Ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105 
<=> 100.1b + b5 = 1b.105b 
<=> b5 = 5.1b 
<=> 10b + 5 = 5.(10+b) 
=> b = 9 
Vậy số abc là 195

23 tháng 12 2018

Câu 2:

SSH là: [ ( 2n - 1 ) - 1 ] : 2 + 1 = n ( số )

Tổng là: [ ( 2n - 1 ) + 1 ] . n : 2 = 2n . n : 2 = 2n2 : 2 = n2 

=> M là số chính phương

12 tháng 4 2015

Có abbc < 10.000 
=> ab.ac.7 < 10000 
=> ab.ac < 1429 
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0) 
=> a0 < 38 
=> a <= 3 
+) Với a = 3 ta có 
3bbc = 3b.3c.7 
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại 
+)Với a = 2 ta có 
2bbc = 2b.2c.7 
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1) 
=> a chỉ có thể = 1 
Ta có 1bbc = 1b.1c.7 
có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5 
lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10) 
=> 1c.7 < 110 => 1c < 16 => c < 6 
vậy c chỉ có thể = 5 
ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105 
<=> 100.1b + b5 = 1b.105b 
<=> b5 = 5.1b 
<=> 10b + 5 = 5.(10+b) 
=> b = 9 
vậy số abc là 195

12 tháng 5 2016

Coppy ko day

5 tháng 4 2019

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)

\(\Leftrightarrow2018ad< 2018bc\)

\(\Leftrightarrow2018ad+cd< 2018bc+cd\)

\(\Leftrightarrow d\left(2018a+c\right)< c\left(2018b+d\right)\)

\(\Leftrightarrow\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(đpcm\right)\)

15 tháng 4 2019

ta có a/b < c/d 

=> ad<bc 

=> 2018ad < 2018bc

=> 2018ad + cd < 2018bc + cd 

=> ( 2018 a + c ) < c ( 2018 b + d )

=> \(\frac{2018a+c}{2018b+d}< \frac{c}{d}\left(\text{đ}pcm\right)\)

1 tháng 3 2020

a, Đặt:  \(S=137+\overline{3x}=137+30+x=12.13+\left(11+x\right)\)

Để: \(S\)chia hết cho \(13\Leftrightarrow11+x\) chia hết cho \(13\)

\(\Rightarrow x=2\)

b, Đặt: \(Q=\overline{137x137x}=10^6.13+\overline{7x}.10^4+13.10^2+\overline{7x}\)

\(=13\left(10^6+10^2\right)+\overline{7x}.10001\)

Lại có: \(10001\)không chia hết cho \(13\)

Để: \(Q\) chia hết cho \(13\Leftrightarrow\overline{7x}\) chia hết cho \(13\)

\(\Rightarrow x=8\)