Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B1:
Ta có:A-B=111...111111-2 x 111...111111
(100 chữ số 1) (50 chữ số 2)
=1111...1111 x (1000...0001 - 2)
(50 chữ số 1) (có 51 chữ số trong đó có 49 chữ số 0)
=1111...1111 x 9999...9999
(50 chữ số 1) (50 chữ số 9)
=1111...1111 x 9 x 1111...1111
(50 chữ số 1) (50 chữ số 1)
=(1111...1111)^2 x 3^2
=(1111...1111 x 3)^2
Vậy hiệu A-B là một số chính phương
\(=10.a+b-10.b-a\)
\(=9.a-9.b\)
\(=9.\left(a-b\right)\)
Mà số này là số chính phương nên a-b chỉ có 1 giá trị nên a-b=9.
Mà a>0 nên a bằng 9 và b=0.
Số cần tìm là 90.
Chúc em học tốt^^
Ta có: \(A=\overline{ab}+\overline{ba}\)\(=10a+b+10b+a=11a+11b=11\left(a+b\right)⋮11\)
Mà \(1\le a\le9,1\le b\le9\)
Để A là số chính phương => a+b=11
\(\Rightarrow\left(a,b\right)\in\left\{\left(2;9\right),\left(3;8\right),\left(4;7\right),\left(5;6\right),\left(6;5\right),\left(7;4\right),\left(8;3\right),\left(9;2\right)\right\}\)
Vậy ta có các số: 29,92,38,83,47,74,56,65
ab - ba = (10a + b) - (10b + a) = 9a - 9b = 9(a - b)
ab - ba là số chính phương <=> 9(a - b) là số chính phương => a-b là số chính phương
Mà 0<a-b<9 => a-b = 1 hoặc 4
+a - b = 1 => ab thuộc {21;32;43;54;65;76;87;98}. Mà ab là số nguyên tố => ab = 43
+a - b = 4 => ab thuộc {51;62;73;84;95}. Mà ab là số nguyên tố => ab = 73
Kết luận: ab có 2 giá trị là 43 và 73