\(1:\frac{ }{a,abc}=a+b+c\) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

mk chưa hc tới bài này nên ko biết làm,thông cảm nha.Nhưng cho mk hỏi hậu tạ cái j z bạn

16 tháng 7 2017

- TRỊNH THỊ THANH HUYỀN Hậu tạ nghĩa là trả ơn sau khi nhận được sự giúp đỡ.

9 tháng 11 2021
a, (3x-1)^6 = (3x-1)^4 => (3x-1)^4.(3x-1)^2-(3x-1)^4.1=0 => (3x-1)^4.[(3x-1)^2-1]=0 => (3x-1)^4=0 hoặc (3x-1)^2-1=0 + Nếu (3x-1)^4=0 => 3x-1=0 => 3x=1 => x=1/3 + Nếu (3x-1)^2-1=0 => (3x-1)^2=1 => 3x-1=-1 hoặc 3x-1=1 => 3x=0 hoặc 3x=2 => x=0 hoặc x=2/3 Vậy x€{1/3;0;2/3}
9 tháng 11 2021

a/ \(\left(3x-1\right)^6=\left(3x-1\right)^4\Rightarrow\left(3x-1\right)=\left\{-1;0;1\right\}\)

\(\Rightarrow x=\left\{0;\frac{1}{3};\frac{2}{3}\right\}\)

b/

\(\frac{a+b-c}{c}=\frac{a-b+c}{b}=\frac{-a+b+c}{a}=\frac{a+b-c+a-b+c-a+b+c}{a+b+c}=1\)

\(\Rightarrow\frac{a+b-c}{c}=1\Rightarrow a+b=2c\)

Tương tự

\(b+c=2a;a+c=2b\)

\(\Rightarrow M=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\frac{2c.2a.2b}{abc}=8\)

2 tháng 9 2017

Bài 1

Gọi phân số phải tìm là \(\frac{a}{b}\)(a,b)=1

Ta có ab=\(2^2\).\(3^2\).\(5.7\)

Vì b ko có ước nguyên tố 3 và 7 nên b thuộc {4,5,20}

Suy ra \(\frac{a}{b}=\frac{315}{4}=\frac{252}{5}=\frac{63}{20}\)

Bài 2

a) Số abc là 125

b) Số abc là 625 và số abcd là 6253

c) x= 5 , y=4

xl mk lm nhanh nhé 

giải 

biến đổi đẳng thức thành

\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)

      \(\overline{ab}.c=1001\div11=91\)

phân tích ra thừa số nguyên tố   \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là  \(13.7\)hoặc  \(91.1\)

th1 cho \(\overline{ab}=13,c=7\)

th2 cho  \(\overline{ab}=91,c=1\)loại vì  b=c

vậy ta có  \(13.77.137=137137\)

29 tháng 3 2019

Sửa một chút nhé:

\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)

<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)

<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)

<=> \(\overline{ab}.c.11=1001\)

<=> \(\overline{ab}.c=91\)

3 tháng 12 2016

Câu 1:

Giải:

Ta có: \(15x=\left(-10\right)y=6z\Rightarrow\frac{15x}{30}=\frac{\left(-10\right)y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k,y=-3k,z=5k\)

\(xyz=-30000\)

\(\Rightarrow2k\left(-3\right)k5k=-30000\)

\(\Rightarrow\left(-30\right).k^3=-30000\)

\(\Rightarrow k^3=1000\)

\(\Rightarrow k=10\)

\(\Rightarrow x=20;y=-30;z=50\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(20;-30;50\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

\(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\)

Tương tự ta có b = c, c = d, d = a

\(\Rightarrow a=b=c=d\)

\(\Rightarrowđpcm\)

3 tháng 12 2016

3, áp dụng tính chất dãy tỉ số bằng nhau:

=>\(\frac{a}{3.b}\)=\(\frac{b}{3.c}\)=\(\frac{c}{3.d}\) =\(\frac{d}{3.a}\) =\(\frac{a+b+c+d}{3\left(b+c+a+d\right)}\) =\(\frac{1}{3}\)

\(\Rightarrow\)\(\frac{a}{3b}\)=\(\frac{1}{3}\) =>\(\frac{1.b}{3.b}\) =\(\frac{b}{3.b}\) =>\(\frac{a}{3b}\) =\(\frac{b}{3b}\) =>...a=b (1)

\(\frac{c}{3d}\)=\(\frac{1}{3}\) =>\(\frac{1.d}{3.d}\) =\(\frac{d}{3d}\) =>\(\frac{c}{3d}\) =\(\frac{d}{3d}\) =>...c=d (2)

\(\frac{b}{3c}\) =\(\frac{1}{3}\) =>\(\frac{1.c}{3.c}\) =\(\frac{c}{3c}\)=>\(\frac{b}{3c}\) =\(\frac{c}{3c}\)=>..b=c (3)

\(\frac{d}{3a}\)=\(\frac{1}{3}\) =>\(\frac{1.a}{3.a}\) =\(\frac{a}{3a}\)=>\(\frac{d}{3a}\) =\(\frac{a}{3a}\)...=>d=a (4)

từ (1).(2).(3)(4)=>a=b=c=d(dpcm)