x2 +...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
1 tháng 7 2024

\(x^2+5y^2+2y-4xy-3=0\\ \Rightarrow\left(x^2-4xy+4y^2\right)+\left(y^2+2y+1\right)-4=0\\ \Rightarrow\left(x-2y\right)^2+\left(y+1\right)^2=4\)

Mình nghĩ bạn thiếu đề nhé

Bổ sung đề: Tìm cặp x, y nguyên thỏa mãn

Với x, y nguyên hiển nhiên x-2y và y+1 nguyên

Mà: \(4=0^2+2^2=0^2+\left(-2\right)^2\)

Các trường hợp xảy ra:

TH1: y+1=0 và x-2y=2

=> y=-1 và x=0

TH2: y+1=0 và x-2y=-2

=> y=-1 và x=-4

TH3: y+1=2 và x-2y=0

=> y=1 và x=2

TH4: y+1=-2 và x-2y=0

=> y=-3 và x=-6

Vậy (x;y)=(0;-1);(-4;-1);(2;1);(-6;-3)

15 tháng 3 2022

[1111222x5]

Cho các sốx y εR , � thoả mãn: 5x + 2y - 6xy - 4x - 6y + 13 = 0 . Tính giá trị của biểuthức: M= (2x - y)2022  + (x - 2)2021 + (y - 3)2020

Đề bài mình thấy là 4xy thì làm được nha!

\(5x^2+2y^2-4xy-4x-6y+13=0\)

\(\left(x^2-4x+4\right)+\left(y^2-6y+9\right)+\left(4x^2+y^2-4xy\right)=0\)

\(\left(x-2\right)^2+\left(y-3\right)^2+\left(2x-y\right)^2=0\)

Ta thấy: \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y-3\right)^2\ge\\\left(2x-y\right)^2\ge0\end{cases}0\Leftrightarrow\left(x-2\right)^2+\left(y-3\right)^2+\left(2x-y\right)^2\ge0}\)

Mà \(\left(x-2\right)^2+\left(y-3\right)^2+\left(2x-y\right)^2=0\)

Bạn nhận xét rồi làm nốt  nha!

NM
16 tháng 10 2021

Để A chia hết cho B thì A cũng phải có nghiệm x=2

Do đó ta có : 

\(3.2^3-2.2^2+2a-a-5=0\Leftrightarrow a=-11\)

thử lại thấy thỏa mãn, do đó a=-11

n^3 + 3n^2 + 2n 

= n (n^2 + 3n + 2 )
= n ( n +1 ) ( n+2 )

Ta có n , n+1 và n +2 là ba số nguyên liên tiếp

=> n (n+1)(n+2) chia hết cho 6 ( vì chia hết cho 2 và 3 )

=> n^3 + 3n^2 + 2n chia hết cho 6

Mời bạn tham khảo:Câu hỏi của Nguyễn Như Đạt