\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\) 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2016

\(x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}-4=0\)

\(\Leftrightarrow\left(x^2-2+\frac{1}{x^2}\right)+\left(y^2-2+\frac{1}{y^2}\right)=0\)

\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(y-\frac{1}{y}\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{x}\\y=\frac{1}{y}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=1\\y^2=1\end{cases}}\)

Làm tiếp nhé 

18 tháng 10 2019

1) đặt \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{y-4}=b\left(b\ge0;\right)\)

M = \(\frac{a}{a^2+1}+\frac{b}{b^2+4}\); a2 +1 \(\ge2a;b^2+4\ge4b\)=> M \(\le\frac{a}{2a}+\frac{b}{4b}=\frac{3}{4}\)

M đạt GTLN khi a=1, b=2 hay x=2; y= 8

2) <=> (x-y)2 + (x+2)2 =8 => (x+2)2\(\le8< =>\left|x+2\right|\le\sqrt{8}\approx2< =>-2\le x+2\le2< =>\)\(-4\le x\le0\)

x=-4 => (y+4)2 =4 <=> y = -2;y = -6

x=-3 => (y+3)2 = 7 (vô nghiệm); x=-1 => (y+1)2 =7 (vô nghiệm)

x=0 => y2 = 4 => y =2;  =-2

vậy có các nghiệm (x;y) = (-4;-2); (-4;-6); (0;-2); (0;2)

3) \(\frac{x^2}{y^2}+\frac{y^2}{z^2}\ge2\frac{x}{z}\left(a^2+b^2\ge2ab\right)\); tương tự với các số còn lại ta được điều phải chứng minh

18 tháng 10 2019

3) sửa lại

áp dụng a2+b2+c2 \(\ge\frac{\left(a+b+c\right)^2}{3}\)

\(\frac{x^2}{y^2}+\frac{y^2}{z^2}+\frac{z^2}{x^2}\ge\frac{\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)^2}{3}\ge\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\)(vì \(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge3\sqrt[3]{\frac{xyz}{yzx}}=3\))

dấu '=' khi x=y=z

7 tháng 11 2018

\(a)\)\(x+xy+y=-6\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)

Lập bảng xét TH ra là xong 

\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

Xin thêm 1 slot đi hok về làm cho -,- 

7 tháng 11 2018

\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel ) 

Ta có : 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :)) 

Chúc bạn học tốt ~ 

12 tháng 10 2019

ê biết câu 3a không bày với Hà

13 tháng 10 2019

1) \(y^4=x\left(2y^2-1\right)\)\(\Leftrightarrow\)\(x=\frac{y^4}{2y^2-1}\) \(\left(2y^2-1\ne0\right)\)

x nguyên => 4x nguyên => \(\frac{4y^4}{2y^2-1}=\frac{4y^4-1}{2y^2-1}+\frac{1}{2y^2-1}=2y^2+\frac{1}{2y^2-1}+1\)

=> \(1⋮\left(2y^2-1\right)\) => \(\left(2y^2-1\right)\inƯ\left(1\right)=\left\{1;-1\right\}\) => \(y\in\left\{-1;0;1\right\}\)

cặp số nguyên \(\left(x;y\right)=\left\{\left(-1;1\right);\left(0;0\right);\left(1;1\right)\right\}\)

2) \(M=\frac{x^2+xy+y^2+12}{x+y}=\frac{x^2+2xy+y^2}{x+y}-\frac{xy}{x+y}+\frac{12}{x+y}\)

\(\ge x+y-\frac{\frac{\left(x+y\right)^2}{4}}{x+y}+\frac{12}{x+y}=\frac{3\left(x+y\right)}{4}+\frac{12}{x+y}\ge6\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\\frac{3\left(x+y\right)}{4}=\frac{12}{x+y}\end{cases}}\Leftrightarrow x=y=2\)

10 tháng 8 2017

post từng câu một thôi bn nhìn mệt quá

6 tháng 10 2019

3.(x+y)^2+y^2+3y+9/4=25/4

(x+y)^2+(y+3/2)^2=25/4

6 tháng 10 2019

2

Do \(\overline{a56b}⋮45\)nên \(\overline{a56b}\) chia hết cho 5;9 vì \(\left(5,9\right)=1\)

\(TH1:b=5\Rightarrow\overline{a56b}=\overline{a565}\) chia hết cho 9

\(\Rightarrow a+5+6+5⋮9\Rightarrow a+16⋮9\)

Mà \(a\in\left\{1;2;3;4;5;6;7;8;9;0\right\}\)

\(\Rightarrow a=2\)

\(TH2:b=0\Rightarrow\overline{a56b}=\overline{a560}⋮9\)

\(\Rightarrow a+5+6+0⋮9\Rightarrow11⋮9\)

Lập luận tương tự ta có \(a=7\Rightarrow\overline{a56b}=7560\)

13 tháng 10 2019

đkxđ: \(x,y\ne0\)

Khai triển ra ta được\(\frac{x^2}{y}-\frac{x^2}{43}+\frac{y^2}{x}-\frac{y^2}{43}+x+y=0\)


<=> \(\frac{x^2+y^2}{y}+\frac{x^2+y^2}{x}-\frac{x^2+y^2}{43}=0\)

<=>\(\frac{1}{x}+\frac{1}{y}-\frac{1}{43}=0\)

<=> \(\frac{x+y}{xy}=\frac{1}{43}\)

<=>\(43\left(x+y\right)-xy=0\)\(\orbr{\begin{cases}\hept{\begin{cases}43-x=1849\\43-y=1\end{cases}}\\\hept{\begin{cases}43-x=1\\43-y=1849\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=42\\y=-1806\end{cases}}\\\hept{\begin{cases}x=-1806\\y=42\end{cases}}\end{cases}}\)

<=>\(\left(43-x\right)\left(43-y\right)=1849\)(tự phân tích nhân tử)

  Tự giải phương trình ước số ra nghiệm (x,y)={(42;-1806);(-1806:42)}