K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2017

Áp dụng bdt cosi ta có :

VT >= 2\(\sqrt{x^2.1}\).2\(\sqrt{x^2.y^2}\) = 2x . 2xy = 4x^2y = VP

=> VT >= VP

Dấu "=" xảy ra <=> x=1 và x=y <=> x=y=1

Vậy x=y=1

k mk nha

22 tháng 3 2016

(x;y) = ( 1;1 ) ; ( 0;0 ) ; ( -1;1 ) 

=> Có 3 cặp

23 tháng 7 2020

\(4x^2+y^2=\left(2xy+1\right)^2\Leftrightarrow4x^2+y^2=4x^2y^2+4xy+1\Leftrightarrow\left(2x-y\right)^2-4x^2y^2=1\)

\(\Leftrightarrow\left(2x-y-2xy\right)\left(2x-y+2xy\right)=1\)

Đến đây ta có các trường hợp

\(\hept{\begin{cases}2x-y-2xy=1\\2x-y+2xy=1\end{cases}}\)và \(\hept{\begin{cases}2x-y-2xy=-1\\2x-y+2xy=-1\end{cases}}\)

Giải ra được \(\left(x;y\right)\in\left\{\left(0;1\right);\left(0;-1\right)\right\}\)

19 tháng 3 2016

mk đưa lun kết quả : k = 2..check mk nhá

19 tháng 3 2016

pt<=> x^4+y^2+x^2*y^2+x^2-4x^2y=0

=>(x^4-2x^2y+y^2)+x^2(1-2y+y^2)=0

25 tháng 7 2020

sdwqfww