Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10. a)
\(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\Leftrightarrow\frac{x^4}{a}+\frac{y^4}{b}=\frac{\left(x^2+y^2\right)^2}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(x^4+y^4\right)=ab\left(x^2+y^2\right)^2\Leftrightarrow\left(bx^2-ay^2\right)^2=0\Leftrightarrow bx^2=ay^2\)
b) Từ \(ay^2=bx^2\Rightarrow\frac{y^2}{b}=\frac{x^2}{a}=\frac{x^2+y^2}{a+b}=\frac{1}{a+b}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\); \(\frac{y^{2008}}{b^{1004}}=\frac{1}{\left(a+b\right)^{1004}}\)
\(\Rightarrow\frac{x^{2008}}{a^{1004}}+\frac{y^{2008}}{b^{1004}}=\frac{2}{\left(a+b\right)^{1004}}\)
25. Ta có \(\left(ax+by+cz\right)^2=0\Leftrightarrow a^2x^2+b^2y^2+c^2z^2=-2\left(abxy+bcyz+acxz\right)\)
Xét mẫu số của P : \(bc\left(y-z\right)^2+ac\left(x-z\right)^2+ab\left(x-y\right)^2=bc\left(y^2-2yz+z^2\right)+ac\left(x^2-2xz+z^2\right)+ab\left(x^2-2xy+y^2\right)\)
\(=y^2bc-2bcyz+bcz^2+acx^2-2xzac+acz^2+abx^2-2abxy+aby^2\)
\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2-2\left(abxy+xzac+bcyz\right)\)
\(=y^2bc+bcz^2+acx^2+acz^2+abx^2+aby^2+a^2x^2+b^2y^2+c^2z^2\)
\(=c\left(ax^2+by^2+cz^2\right)+b\left(ax^2+by^2+cz^2\right)+a\left(ax^2+by^2+cz^2\right)=\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)\)
\(\Rightarrow P=\frac{ax^2+by^2+cz^2}{\left(a+b+c\right)\left(ax^2+by^2+cz^2\right)}=\frac{1}{a+b+c}=\frac{1}{2007}\)
8. \(\frac{x^3}{a^3}+\frac{y^3}{b^3}=\left(\frac{x}{a}+\frac{y}{b}\right)^3-3.\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1^3-3.\left(-2\right).1=7\)
vì x2+y2+z2=1 mà x2+y2+z2>=xy+yz+xz suy ra 1>= xy+yz+xz
x2+y2+z2=1 suy ra (x-y)2=1-2xy-z2 ,(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2
\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]=\)
\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)(do (x-y)2=1-2xy-z2(y-z)2=1-2yz-x2,(x-z)2=(x-z)2=1-2xz-y2)
theo bdt cosi ta có:
\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)
\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2z\sqrt{2xy}+2y\sqrt{2xz}+2x\sqrt{2yz}\right)]\)
\(\le\sqrt{3}+\frac{1}{2\sqrt{3}}[3-3\sqrt[3]{\left(2z\sqrt{2xy}.2y\sqrt{2xz}.2x\sqrt{2yz}\right)}\)
\(=\sqrt{3}+\frac{\sqrt{3}}{2}[1-2\sqrt{2}.\sqrt[3]{xyz^2}]\)\(=\sqrt{3}\left(1+\frac{1}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)=\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)
suy ra
\(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\left(doxy+yz+xz\le1\right)\)
ta giả sử:
\(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\Leftrightarrow\sqrt{3}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\) mà \(\sqrt{3}>\frac{3}{2}\)
suy ra \(\frac{3}{2}\ge\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\)(luôn đúng) suy ra điều giả sử trên là đúng
hay \(3\sqrt[3]{xyz}\ge\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)
mà \(\frac{x+y+z}{xy+yz+xz}\ge3.\sqrt[3]{xyz}\),\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)\(\le\sqrt{3}\left(\frac{3}{2}-\sqrt{2}.\sqrt[3]{xyz^2}\right)\)
suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[3-\left(2xy+z^2+2yz+x^2+2xz+y^2\right)]\)
suy ra \(\frac{x+y+z}{xy+yz+xz}\ge\)\(\sqrt{3}+\frac{1}{2\sqrt{3}}[\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2]\)(đpcm)
em mới có lớp 8, nếu em làm sai cho em xin lỗi nha anh
đkxđ: \(x,y\ne0\)
Khai triển ra ta được\(\frac{x^2}{y}-\frac{x^2}{43}+\frac{y^2}{x}-\frac{y^2}{43}+x+y=0\)
<=> \(\frac{x^2+y^2}{y}+\frac{x^2+y^2}{x}-\frac{x^2+y^2}{43}=0\)
<=>\(\frac{1}{x}+\frac{1}{y}-\frac{1}{43}=0\)
<=> \(\frac{x+y}{xy}=\frac{1}{43}\)
<=>\(43\left(x+y\right)-xy=0\)\(\orbr{\begin{cases}\hept{\begin{cases}43-x=1849\\43-y=1\end{cases}}\\\hept{\begin{cases}43-x=1\\43-y=1849\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=42\\y=-1806\end{cases}}\\\hept{\begin{cases}x=-1806\\y=42\end{cases}}\end{cases}}\)
<=>\(\left(43-x\right)\left(43-y\right)=1849\)(tự phân tích nhân tử)
Tự giải phương trình ước số ra nghiệm (x,y)={(42;-1806);(-1806:42)}