\(xy^2=x^2+2Y^2+7\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2020

\(2x^2+2y^2+3x-6y=5xy-7\)

\(\Leftrightarrow2x^2+2y^2+3x-6y-5xy=-7\)

\(\Leftrightarrow2x^2-4xy+2y^2-xy+3x-6y=-7\)

\(\Leftrightarrow2x\left(x-2y\right)-y\left(x-2y\right)+3\left(x-2y\right)=-7\)

\(\Leftrightarrow\left(2x-y+3\right)\left(x-2y\right)=-7\)

vì x,y nguyên nên \(\hept{\begin{cases}2x-y+3\\x-2y\end{cases}\in Z}\)

Ta có : -7 = ( -7 ) . 1 = (-1 ) . 7

Tới đây bạn tự làm nhé

x^2-xy+y^2=x^2.y^2+3

⇔x²-xy+y²-x²y²=3

⇔Nghiệm ko thỏa mãn

17 tháng 1 2020

Có: \(x^5+y^2=xy^2+1\)

<=> \(x^5-1=y^2\left(x-1\right)\)(1)

TH1: x = 1 

=> \(1^2+y^2=1.y^2+1\) đúng với mọi y

TH2: \(x\ne1\)

(1) <=> \(y^2=x^4+x^3+x^2+x+1\)

<=> \(4y^2=4x^4+4x^3+4x^2+4x+4\)

Có:

+)  \(4x^4+4x^3+4x^2+4x+4=4x^4+4x^3+x^2+2x^2+x^2+4x+4\)

\(=\left(2x^2+x\right)^2+2x^2+\left(x+2\right)^2>\left(2x^2+x\right)^2\)

=> \(\left(2y\right)^2>\left(2x^2+x\right)^2\)

+) \(4x^4+4x^3+4x^2+4x+4\le\left(2x^2+x+2\right)^2\)

=> \(\left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

=> \(\left(2x^2+x\right)^2< \left(2y\right)^2\le\left(2x^2+x+2\right)^2\)

TH1: \(\left(2y\right)^2=\left(2x^2+x+2\right)^2\)

=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+4+4x^3+8x^2+4x\)

<=> x = 0 

=> \(y=\pm1\)

TH2: \(\left(2y\right)^2=\left(2x^2+x+1\right)^2\)

=> \(4x^4+4x^3+4x^2+4x+4=4x^4+x^2+1+4x^3+4x^2+2x\)

<=> \(2x+3-x^2=0\)

<=> \(\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)

Với x = -1 => \(y=\pm1\)

Với x = 3 => \(y=\pm11\)

Kết luận:...