\(y^2=3-\text{|}2x-3\text{|}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

vì y>0 => 3- I2x-3I >=0

=> I2x-3I<=3

=>\(\orbr{\begin{cases}2x-3< =3\\2x-3>=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x< =3\\x>=0\end{cases}}\)

nếu x=0 => y=0 (TMĐK)

nếu x=1 =>y=\(\sqrt{2}\)(KTMĐK)

nếu x=2=>y=\(\sqrt{2}\)(KTMĐK)

nếu x=3=>y=0 (TMĐK)

v các cặp số nguyên TM pt đã cho là (x,y): (0,0);(3,0)

13 tháng 9 2017

ta có \(\left|x+2\right|+\left|x-1\right|=\left|x+2\right|+\left|1-x\right|\ge\left|x+2+1-x\right|=3\)

=> \(VT\ge3\)

mà \(3-\left(y+2\right)^2\le3\Rightarrow VP\le3\)

=> VT=VP=3 <=> ... cậu tự giải tiếp nhé

14 tháng 9 2017

thank nhieu nha

15 tháng 9 2017

Xét \(VT=\left|x-5\right|+\left|1-x\right|\ge\left|x-5+1-x\right|=4\)(1)

Ta có \(\left|y+1\right|\ge0\Leftrightarrow\left|y+1\right|+3\ge3\Rightarrow\frac{12}{\left|y+1\right|+3}\le\frac{12}{3}=4\) nên \(VP\le4\)(2)

Từ (1) ; (2) \(\Rightarrow VP\le4\le VT\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-5\right)\left(1-x\right)\ge0\\\left|y+1\right|=0\end{cases}\Rightarrow\hept{\begin{cases}1\le x\le5\\y=-1\end{cases}}}\)

12 tháng 9 2017

Từ \(x+y=4\Rightarrow y=4-x\)

\(\Rightarrow\left|x+2\right|+\left|y\right|=\left|x+2\right|+\left|4-x\right|=6\)(1)

Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) dấu "=" xảy ra \(\Leftrightarrow ab\ge0\) ta có :

\(\left|x+2\right|+\left|4-x\right|\ge\left|x+2+4-x\right|=6\)

Vậy để (1) xảy ra \(\Leftrightarrow\left(x+2\right)\left(4-x\right)\ge0\Leftrightarrow-2\le x\le4\)

Với x = - 2 thì y = 6 ; x = - 1 thì y = 5; x = 0 thì y = 4; x = 1 thì y = 3; x = 2 thì y = 2 ; x = 3 thì y = 1; x = 4 thì y = 0

Vậy \(\left(x;y\right)=\left\{\left(-2;6\right);\left(-1;5\right);\left(0;4\right);\left(1;3\right);\left(2;2\right);\left(3;1\right);\left(4;0\right)\right\}\)

5 tháng 8 2016

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}=\frac{y^2-x^2+y^2+x^2}{3+5}=\frac{y^2+y^2}{8}=\frac{2y^2}{8}\)

\(\Rightarrow\frac{y^2-x^2}{3}=\frac{2y^2}{8}\)

\(\Rightarrow\frac{y^2-x^2}{3}=\frac{y^2}{4}\)

\(\Rightarrow4y^2-4x^2=3y^2\)

\(\Rightarrow4y^2-3y^2=4x^2\)

\(\Rightarrow y^2=4x^2\)

Thế vào \(x^{10}.y^{10}=1024\), ta có:

\(x^{10}.\left(y^2\right)^5=1024\)

\(x^{10}.\left(4x^2\right)^5=1024\)

\(\Rightarrow1024.x^{10}.x^{10}=1024\) ( cái này thì ko chắc )

\(\Rightarrow x^{20}=1\)

\(\Rightarrow x=1;x=-1\)

\(\Rightarrow y=2;y=-2\)

Vậy có 2 cặp ( x ; y ) thỏa mãn.

 

5 tháng 8 2016

\(\frac{y^2-x^2}{3}=\frac{y^2+x^2}{5}\)( từ đây ta thấy \(y^2-x^2;y^2+x^2\)cùng dấu )

\(\Rightarrow5y^2-5x^2=3y^2+3x^2\)

\(2y^2=8x^2\)

\(y^2=\left(2x\right)^2\)

\(\Rightarrow\left[\begin{array}{nghiempt}y=2x\\y=-2x\end{array}\right.\)

\(x^{10}y^{10}=1024\Rightarrow\left[\begin{array}{nghiempt}xy=2\\xy=-2\end{array}\right.\)

Với \(xy=2\)

\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

Với \(xy=-2\)

\(+y=2x\Rightarrow\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right)\right\}\)

\(+y=-2x\Rightarrow\left(x;y\right)\in\left\{\left(2;1\right);\left(-2;-1\right)\right\}\)

Tóm lại ta có :

\(\left(x;y\right)\in\left\{\left(-2;1\right);\left(2;-1\right);\left(2;1\right);\left(-2;-1\right)\right\}\)

6 tháng 7 2017

Đây nhé: Câu hỏi của Trần Thị Thùy Trang - Toán lớp 7 - Học toán với OnlineMath

6 tháng 7 2017

cặp số nguyên dương là 2 nhá 

bởi vì 2+5=5 và 2+4=4 ,