Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Với mọi x nguyên ta luôn có: \(\left(x-1\right)^2\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\left(x-1\right)^2=0\) \(\Leftrightarrow\) \(x-1=0\) \(\Leftrightarrow\) x = 1.
Do đó \(A=\left(x-1\right)^2+2008\ge0+2008=2008\)
Vậy GTNN của A là 2008 tại x = 1.
b) Với mọi x nguyên ta luôn có \(\left|x+4\right|\ge0\)
.Dấu "=" xảy ra \(\Leftrightarrow\) \(\left|x+4\right|=0\) \(\Leftrightarrow\) \(x+4=0\) \(\Leftrightarrow\) x = -4.
Do đó \(B=\left|x+4\right|+1996\ge0+1996=1996\)
Vậy GTNN của B là 1996 tại x = -4.
\(a,\left(4\frac{1}{2}-\frac{2}{5}x\right):1\frac{3}{4}=\frac{11}{14}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right):\frac{7}{4}=\frac{11}{4}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{11}{4}\cdot\frac{7}{4}\)
\(\Rightarrow\left(\frac{9}{2}-\frac{2}{5}x\right)=\frac{77}{16}\)
\(\Rightarrow\frac{9}{2}-\frac{2}{5}x=\frac{77}{16}\)
\(\Rightarrow-\frac{2}{5}x=\frac{77}{16}-\frac{9}{2}\)
\(\Rightarrow-\frac{2}{5}x=\frac{5}{16}\)
\(\Rightarrow x=\frac{5}{16}:\left(-\frac{2}{5}\right)\)
\(\Rightarrow x=-\frac{25}{32}\)
\(b,\frac{2}{3}\cdot x-\frac{2}{5}x=\frac{9}{3}\)
\(\Rightarrow x\left(\frac{2}{3}-\frac{2}{5}\right)=\frac{8}{3}\)
\(\Rightarrow x\cdot\frac{4}{15}=\frac{8}{3}\)
\(\Rightarrow x=\frac{8}{3}:\frac{4}{15}\)
\(\Rightarrow x=10\)
\(c,\frac{-2}{3}|x|+1\frac{1}{2}=\frac{2}{5}\)
\(\Rightarrow\frac{-2}{3}|x|+\frac{3}{2}=\frac{2}{5}\)
\(\Rightarrow\frac{-2}{3}|x|=\frac{2}{5}-\frac{3}{2}\)
\(\Rightarrow\frac{-2}{3}|x|=-\frac{11}{10}\)
\(\Rightarrow|x|=\frac{-11}{10}:\frac{-2}{3}\)
\(\Rightarrow|x|=\frac{33}{20}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{33}{20}\\x=-\frac{33}{20}\end{cases}}\)
\(d,|2x-\frac{1}{3}|+\frac{1}{6}=\frac{3}{4}\)
\(\Rightarrow|2x-\frac{1}{3}|=\frac{3}{4}-\frac{1}{6}\)
\(\Rightarrow|2x-\frac{1}{3}|=\frac{7}{12}\)
\(\Rightarrow\orbr{\begin{cases}2x-\frac{1}{3}=\frac{7}{12}\\2x-\frac{1}{3}=-\frac{7}{12}\end{cases}\Rightarrow\orbr{\begin{cases}2x=\frac{11}{12}\\2x=-\frac{1}{4}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{11}{24}\\x=-\frac{1}{8}\end{cases}}}\)
#)Giải :
\(\frac{-5}{12}< \frac{a}{5}< \frac{1}{4}\Leftrightarrow\frac{-25}{60}< \frac{12a}{60}< \frac{15}{60}\Leftrightarrow-25< 12a< 15\)
\(\Leftrightarrow12a\in\left\{\pm12;-24\right\}\)
\(\Leftrightarrow a\in\left\{\pm1;2\right\}\)
Bài giải
Ta có :
\(-\frac{5}{12}< \frac{a}{5}< \frac{1}{4}\)
\(\Leftrightarrow\text{ }-\frac{25}{60}< \frac{12a}{60}< \frac{15}{60}\) \(\Rightarrow\text{ }-25< 12a< 15\)
\(\Rightarrow\text{ }-1,25< a< 1,25\)
\(\text{Do }a\in Z\text{ }\Rightarrow\text{ }x\in\left\{-1\text{ ; }0\text{ ; }1\right\}\)
Ta có : a/3 - 1/2 = 1/b+5
=> 2a-3/6 = 1/b+5
=> (2a-3)(b+5)= 6
Sau đó bn xét bảng là ra
Đặt \(B=\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2014^2}\)
Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
...
\(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2013.2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2013}-\frac{1}{2014}\)
\(\Rightarrow B< \frac{1}{2}-\frac{1}{2014}< \frac{1}{2}\)
\(\Rightarrow A< \frac{1}{2^2}+\frac{1}{2}=\frac{3}{4}\)
Vậy A<\(\frac{3}{4}\)
A<\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\)=\(\frac{2013}{2014}\)<\(\frac{3}{4}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{99\cdot100}\)
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{50}\)
\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)