Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức: \(\frac{a}{b}< 1\Rightarrow\frac{a}{b}=\frac{1}{k+1}+\frac{a-r}{b\left(k-1\right)}\)với k là thương của b cho a, r là số dư của phép chia của b cho a
=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)
Vậy...(làm hơi tắt, chắc bn hiểu dc)
Này m đk lm đề này ak , t bh mới đk cô cho lm . Mẹ khó vãi , mỗi câu đầu m hỏi t làm đk thôi
ĐKXĐ: \(a\ne0;\)\(a+b\ne0;\)\(a+b+c\ne0\)
Vì 3 số a,b,c là 3 số tự nhiên
\(\Rightarrow\)\(\frac{1}{a}\ge a+b;\)\(\frac{1}{a}\ge\frac{1}{a+b+c}\)
\(\Rightarrow\)\(\frac{1}{a}+\frac{1}{a+b}+\frac{1}{a+b+c}\le\frac{1}{a}+\frac{1}{a}+\frac{1}{a}=\frac{3}{a}\)
\(\Rightarrow\)\(0< a\le3\)
Sau đó bn xét từng trường hợp a = 1,2,3 để giải biểu thức trên là xong nhé
Không mất tính tổng quát, giả sử \(a\le b\le c\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{3}{a}\)
\(\Rightarrow\frac{3}{a}\ge\frac{4}{5}\Rightarrow a\le\frac{15}{4}\Rightarrow a< 4\)
Mặt khác \(\frac{1}{a}< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow a>\frac{5}{4}\Rightarrow a>1\)
\(\Rightarrow1< a< 4\Rightarrow\left[{}\begin{matrix}a=2\\a=3\end{matrix}\right.\)
- Với \(a=2\Rightarrow\frac{1}{b}+\frac{1}{c}=\frac{3}{10}\)
\(\Rightarrow\frac{3}{10}\le\frac{2}{b}\Rightarrow b\le\frac{20}{3}\Rightarrow b< 7\)
\(\frac{1}{b}< \frac{1}{b}+\frac{1}{c}=\frac{3}{10}\Rightarrow b>\frac{10}{3}\Rightarrow b>3\)
\(\Rightarrow3< b< 7\Rightarrow b=\left\{4;5;6\right\}\Rightarrow c=\left\{20;10;\frac{2}{15}\left(l\right)\right\}\)
- Với \(a=3\Rightarrow...\) xét tương tự bên trên
way gioi the to ko biet giang nay