Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ chứng minh với \(n\ge1\)thì \(P_n=\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2n-1\right)^2}\right)=\frac{-2n-1}{2n-1}\)
Với \(n=1\)mệnh đề đúng vì \(1-4=-3=\frac{-2.1-1}{2.1-1}\)
Giả sử mệnh đề đúng với \(n=k\)tức là \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k-1\right)^2}\right)=\frac{-2k-1}{2k-1}\)
Ta sẽ chứng minh mệnh đề đúng với \(n=k+1\)tức là chứng minh \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k+1\right)^2}\right)=\frac{-\left(2k+3\right)}{2k+1}\)
Thật vậy \(\left(1-\frac{4}{1}\right)\left(1-\frac{4}{9}\right)\left(1-\frac{4}{25}\right)...\left(1-\frac{4}{\left(2k-1\right)^2}\right)\left(1-\frac{4}{\left(2k+1\right)^2}\right)=\frac{-2k-1}{2k-1}.\frac{\left(2k-1\right)\left(2k+3\right)}{\left(2k+1\right)^2}\)
\(=\frac{-\left(2k+1\right)}{2k-1}.\frac{\left(2k-1\right)\left(2k+3\right)}{\left(2k+1\right)^2}=\frac{-\left(2k+3\right)}{2k+1}.\)
Theo nguyên lý quy nạp, mệnh đề đúng với mọi \(n\ge1\)
Giả sử cả 3 bđt trên đều đúng, như vậy \(a\left(1-a\right).b\left(1-b\right).c\left(1-c\right)>\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\)
Mặt khác vì \(0< a,b,c< 1\) nên:
\(0< a\left(1-a\right)=-a^2+a-\frac{1}{4}+\frac{1}{4}=\frac{1}{4}-\left(a-\frac{1}{2}\right)^2\le\frac{1}{4}\)
Tương tự \(0< b\left(1-b\right)\le\frac{1}{4}\) và \(0< c\left(1-c\right)\le\frac{1}{4}\)
Suy ra \(a\left(1-a\right).b\left(1-b\right).c\left(1-c\right)\le\frac{1}{4}.\frac{1}{4}.\frac{1}{4}=\frac{1}{64}\) (vô lý)
Vậy phải có ít nhất 1 bđt sai
Bài 1:
Ta có:
\(\left(a-b+c\right)^3=a^3-b^3+c^3-3a^2b+3a^2c+3ab^2+3b^2c+3ac^2-3bc^2-6abc\)
\(\Rightarrow\left(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\right)^3=\frac{1}{9}-\frac{2}{9}+\frac{4}{9}-\frac{1}{3}.\sqrt[3]{2}+\frac{1}{3}.\sqrt[3]{4}+\frac{1}{3}.\sqrt[3]{4}+\frac{2}{3}.\sqrt[3]{2}\)
\(+\frac{2}{3}.\sqrt[3]{2}-\frac{2}{3}.\sqrt[3]{4}-\frac{4}{3}=\sqrt[3]{2}-1\)
\(\Rightarrow\sqrt[3]{\sqrt[3]{2}-1}=\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
\(\left(\frac{2^2-1}{2^2}\right)\left(\frac{3^2-1}{3^2}\right)\left(\frac{4^2-1}{4^2}\right)...\left(\frac{\left(n-1\right)^2-1}{\left(n-1\right)^2}\right)\left(\frac{n^2-1}{n^2}\right)\)
=\(\frac{\left(2-1\right)\left(2+1\right)}{2^2}.\frac{\left(3-1\right)\left(3+1\right)}{3^2}.\frac{\left(4-1\right)\left(4+1\right)}{4^2}...\frac{\left(n-2\right)n}{\left(n-1\right)^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}\)
=\(\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{\left(n-2\right).n}{\left(n-1\right)^2}.\frac{\left(n-1\right)\left(n+1\right)}{n^2}=\frac{1}{2}.\frac{n+1}{n}=\frac{1}{2}+\frac{1}{2n}>\frac{1}{2}\)
23 chuyên đề giải 1001 bài toán sơ cấp ,mk nhớ có trog quyển này
ĐÚng rồi thuộc trạng 73 dòng 9