\(4^{3^{ }}-\dfrac{2}{3}x+5-2x+x^3\)

b)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

a) Bậc của đa thức là 3

b) Bậc của đa thức là 3

18 tháng 3 2018

a) Bậc của đa thức là 3

b) Bậc của đa thức là 3

19 tháng 4 2017

a) 3x21212 x + 1 + 2x – x2 = 3x2 + 3232x + 1 có bậc 2;

b) 3x2 + 7x3 – 3x3 + 6x3 – 3x2 = 10x3 có bậc 3.



Xem thêm tại: http://loigiaihay.com/bai-25-trang-38-sgk-toan-7-tap-2-c42a6336.html#ixzz4efAvZ1QR

5 tháng 4 2017

a) x3-x2+x-1=0

=>(x3-x2)+(x-1)=0

=>x2(x-1)+(x-1)=0

(x-1)(x2+1)=0

Ta có \(x^2+1>0\) ( vì \(x^2\ge0\) )

=>x-1=0

x=1

Vậy x=1 là nghiệm của f(x)

b)11x3+5x2+4x+10=0

=>(10x3+10)+(x3+x2)+(4x2+4x)=0

=>10(x3+1)+x2(x+1)+4x(x+1)=0

10(x+1)(x2-x+1)+x2(x+1)+4x(x+1)=0

(x+1)[10(x2-x+1)+x2+4x]=0

(x+1)(11x2-6x+10)=0

(x+1)[(9x2-2.3x+1)+9]=0

(x+1)[(3x-1)2+2x2+9]=0

=>x+1=0

x=-1

Vậy -1 là nghiệm của y(x)

c)-17x3+8x2-3x+12=0

5 tháng 4 2017

135543344-24445555

=x

x= y2

=>445666

20 tháng 4 2018

\(M\left(x\right)=P\left(x\right)+Q\left(x\right)=2,5x^6-4+2,5x^5-6x^3+2x^2\)-5x+\(3x-2,5x^6-x^2+5-2,5x^5+6x^3\)

=\(\left(2,5x^6-2,5x^6\right)\)+\(\left(2,5x^5-2,5x^5\right)\)\(\left(-6x^3+6x^3\right)\)+\(\left(2x^2-x^2\right)\)+\(\left(-5x+3x\right)\)+(-4+5)

= \(x^2-2x+1\)

7 tháng 4 2017

a) Ta có: \(x^3-x^2+x-1=0\)

\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(x^2+1\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2+1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x^2=-1\left(loại\right)\\x=1\end{matrix}\right.\)

Vậy x = 1 là nghiệm của đa thức f(x)

b, c: @Ace Legona

7 tháng 4 2017

a)\(f\left(x\right)=x^3-x^2+x-1\)

Cho \(f\left(x\right)=0\Rightarrow x^3-x^2+x-1=0\)

\(\Rightarrow x^2\left(x-1\right)+\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2+1\right)=0\)

Dễ thấy: \(x^2+1\ge1>0\forall x\) ( vô nghiệm )

\(\Rightarrow x-1=0\Rightarrow x=1\)

b)\(g\left(x\right)=11x^3+5x^2+4x+10\)

Cho \(g\left(x\right)=0\Rightarrow11x^3+5x^2+4x+10=0\)

\(\Rightarrow11x^3-6x^2+10x+11x^2-6x+10=0\)

\(\Rightarrow x\left(11x^2-6x+10\right)+\left(11x^2-6x+10\right)=0\)

\(\Rightarrow\left(x+1\right)\left(11x^2-6x+10\right)=0\)

Dễ thấy:

\(11x^2-6x+10=11\left(x-\dfrac{3}{11}\right)^2+\dfrac{101}{11}\ge\dfrac{101}{11}>0\forall x\) (vô nghiệm)

\(\Rightarrow x+1=0\Rightarrow x=-1\)

c)\(h\left(x\right)=-17x^3+8x^2-3x+12\)

Cho \(h\left(x\right)=0\Rightarrow-17x^3+8x^2-3x+12=0\)

\(\Rightarrow17x^2+9x+12-17x^3-9x^2-12x=0\)

\(\Rightarrow\left(17x^2+9x+12\right)-x\left(17x^2+9x+12\right)=0\)

\(\Rightarrow\left(1-x\right)\left(17x^2+9x+12\right)=0\)

Dễ thấy:

\(17x^2+9x+12=17\left(x+\dfrac{9}{34}\right)^2+\dfrac{735}{68}\ge\dfrac{735}{68}>0\forall x\)(vô nghiệm)

\(\Rightarrow1-x=0\Rightarrow x=1\)

18 tháng 5 2018

Bài 1:

Thay x=1 vào đa thức F(x) ta được:

F(1) = 14+2.13-2.12-6.1+5 = 0

=> x=1 là nghiệm của đa thức F(x)

Tương tự ta thế -1; 2; -2 vào đa thức F(x)

Vậy x=1 là nghiệm của đa thức F(x)