\(B=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+...\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

\(B=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+....\)

\(\Rightarrow B=\frac{7777...}{1000...}\)

25 tháng 7 2016

a) \(A=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+...\)

\(A=\frac{777...}{1000...}\)

b) 1/2+1/3+1/4+…+1/63=1/2+(1/3+1/4)+(1/5+1/6+…+1/10)+(1/11+1/12+….+1/20)+(1/21+1/22+….1/63).
Ta thấy:
1/3+1/4>1/4+1/4=1/2
1/5+1/6+…+1/10>5/10=1/2
1/11+1/12+….+1/20>10/20=1/2
Thêm.cái 1/2 sắn có là đủ >2 rồi nhể

22 tháng 7 2018

Ta có: \(\frac{n}{n+1}< 1\)

\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+1+2}\)

\(\Rightarrow\frac{n}{n+1}< \frac{n+2}{n+3}\)

\(\Rightarrow A< B\)

b. mình ko biết làm 

c. mình cũng ko biết làm

d.Ta có :\(\frac{10^{1993}+1}{10^{1992}+1}>1\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1993}+1+9}{10^{1992}+1+9}\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}.10+10.1}{10^{1991}.10+10.1}\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10\left(10^{1992}+1\right)}{10\left(10^{1991}+1\right)}\)

\(\Rightarrow\frac{10^{1993}+1}{10^{1992}+1}>\frac{10^{1992}+1}{10^{1991}+1}\)

\(\Rightarrow A>B\)

Chúc bạn học tốt nhé

27 tháng 11 2016

b/ Ta có 

\(A-B=\frac{3}{8^3}+\frac{7}{8^4}-\frac{7}{8^3}-\frac{3}{8^4}\)

\(=\frac{4}{8^4}-\frac{4}{8^3}< 0\)

Vậy A < B

c/ Đặt \(10^7=a\)thì ta có

\(A=\frac{a+5}{a-8};B=\frac{10a+6}{10a-7}\)

Giả sử A>B thì ta có

\(\frac{a+5}{a-8}>\frac{10a+6}{10a-7}\)

\(\Leftrightarrow10a^2+43a-35>10a^2-574a-348\)

\(\Leftrightarrow617a+313>0\)(đúng)

Vậy A>B

c/ Đặt \(10^{1991}=a\)thì ta có

\(A=\frac{10a+1}{a+1};B=\frac{100a+1}{10a+1}\)

Giả sử A>B thì ta có

\(\frac{10a+1}{a+1}>\frac{100a+1}{10a+1}\)

\(\Leftrightarrow\left(10a+1\right)^2>\left(100a+1\right)\left(a+1\right)\)

\(\Leftrightarrow-81a>0\)(sai)

Vậy A < B

a/ Thì quy đồng là ra nhé

27 tháng 11 2016

a,b,c,d giống nhau cùng nhân A và B với 1 số nào đấy tách ra r` so sạmh

AH
Akai Haruma
Giáo viên
28 tháng 7 2024

Lời giải:

a.

\(A-B=\frac{7-3}{84}-\frac{7-3}{83}=\frac{4}{84}-\frac{4}{83}<0\\ \Rightarrow A< B\)

b.

\(A-1=\frac{13}{10^7-8}\\ B-1=\frac{13}{10^8-7}\)

Hiển nhiên $10^7-8< 10^8-7$

$\Rightarrow \frac{13}{10^7-8}> \frac{13}{10^8-7}$

$\Rightarrow A-1> B-1\Rightarrow A> B$

21 tháng 4 2019

hướng dẫn mỗi bài 1 phần

Bài 1:

\(A=\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{49.51}\right)\)

\(A=\frac{7}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{51}\right)\)

\(A=\frac{7}{2}.\left(1-\frac{1}{51}\right)\)

\(A=\frac{7}{2}.\frac{50}{51}\)

\(A=\frac{175}{51}\)

Bài 2:

a) Để A nguyên\(\Leftrightarrow3n-5⋮n+4\)

                       \(\Leftrightarrow3n+12-17⋮n+4\)

                       \(\Leftrightarrow3.\left(n+4\right)-17⋮n+4\)

                   mà \(3.\left(n+4\right)⋮n+4\)

\(\Rightarrow17⋮n+4\)

\(\Rightarrow n+4\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)

Lập bảng rùi tìm x

21 tháng 4 2019

thank you lê Tài Bảo Châu

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

2 tháng 5 2019

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)

21 tháng 7 2019

a, -3/4-2x= 4

 2x=-19/4

x=-19/8

21 tháng 7 2019

(-2/3x-3/5).(-29/6)=2/5

-2/3x-3/5=-12/145

-2/3x=15/29

x=-45/58

1 tháng 3 2019

xét A và B có: số mũ từ 2 đến 9 giống nhau; mẫu đều cộng 1

=> Ta chỉ có thể so sánh phần cơ số

vì 7>3 => 7 mũ n>3 mũ n

=> A lớn hơn B