\(A=x^2+y^2\) biết \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

ĐKXĐ: \(0\le x,y\le1\)

ÁP DỤNG BẤT ĐẲNG THỨC BU-NHI-A-CỐP-XKI ta có:\(x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\sqrt{\left(x^2+1-x^2\right)\left(1-y^2+y^2\right)}=1\)

DẤU "=" XẢY RA KHI VÀ CHỈ KHI: \(\frac{x}{\sqrt{1-y^2}}=\frac{\sqrt{1-x^2}}{y}\)\(\Leftrightarrow xy=\sqrt{\left(1-x^2\right)\left(1-y^2\right)}\)

                                                                                                            \(\Leftrightarrow x^2y^2=\left(1-x^2\right)\left(1-y^2\right)\)

                                                                                                             \(\Leftrightarrow x^2y^2=1-x^2-y^2+x^2y^2\)

                                                                                                               \(\Leftrightarrow x^2+y^2=1\)

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

27 tháng 8 2016

2/ Ta có

\(\frac{x+y}{4}+\frac{x^2}{x+y}\)\(\ge\)x

\(\frac{y+z}{4}+\frac{y^2}{y+z}\ge y\)

\(\frac{z+x}{4}+\frac{z^2}{z+x}\ge z\)

Từ đó ta có VT \(\ge\)\(\frac{x+y+z}{2}\)\(\ge\)\(\frac{\sqrt{xy}+\sqrt{yz}+\sqrt{xz}}{2}\)\(\frac{1}{2}\)

Đạt được khi x = y = z = \(\frac{1}{3}\)

21 tháng 8 2016

Bài này trình bày dài làm biếng làm quá

29 tháng 8 2019

a, ĐKXĐ : \(\left[{}\begin{matrix}x\ge0\\ y>0\end{matrix}\right.\) hoặc \(\left[{}\begin{matrix}x>0\\y\ge0\end{matrix}\right.\)

Ta có :\(\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\sqrt{x^2}\sqrt{x}+\sqrt{y^2}\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2=\frac{\sqrt{x^3}+\sqrt{y^3}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}-\sqrt{y}\right)^2\)

= \(\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-\left(x-2\sqrt{xy}+y\right)\)

= \(\left(x-\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\)

= \(x-\sqrt{xy}+y-x+2\sqrt{xy}-y\)

= \(\sqrt{xy}\)

29 tháng 8 2019

\(\sqrt{\frac{\sqrt{a}-1}{\sqrt{b}+1}}:\sqrt{\frac{\sqrt{b}-1}{\sqrt{a}+1}}\) \(=\sqrt{\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\left(\sqrt{b}+1\right)\left(\sqrt{b}-1\right)}}\)\(=\sqrt{\frac{a^2-1}{b^2-1}}\) (*)

Thay a=7,25 và b= 3,25 vào (*) ta có:

\(\sqrt{\frac{7,25^2-1}{3,25^2-1}}\) \(=\frac{5\sqrt{33}}{4}:\frac{3\sqrt{17}}{4}=\frac{5\sqrt{33}}{3\sqrt{17}}=\frac{5\sqrt{561}}{51}\)

17 tháng 10 2020

\(hcmuop\underrightarrow{jjjjjjjjj}me\)