Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/h=1/2(1/a+1/b)=1/2a+1/2b=(a+b)/2ab
=>(a+b/)2ab-1/h=0
quy dong len ta co
(a+b)h/2abh-2ab/2abh=0=> (ah+bh-2ab)/2abh=0 =>ah+bh-2ab=0
=>ah+bh-ab-ab=0
=>a(h-b)-b(a-h)=0
=>a(h-b)=b(a-h)
=>a/b=(a-h)(h-b)
Có: Đề \(\Leftrightarrow\frac{abz-acy}{a^2}=\frac{bcx-abz}{b^2}=\frac{acy-bcx}{c^2}\)\(=\frac{\left(abz-abz\right)+\left(bcx-bcx\right)+\left(acy-acy\right)}{a^2+b^2+c^2}\)
\(=\frac{0}{a^2+b^2+c^2}=0\)\(\left(ĐKXĐ:a,b,c\ne0\right)\)
\(\Rightarrow\hept{\begin{cases}bz-cy=0\\cx-az=0\\ay-bx=0\end{cases}\Leftrightarrow\hept{\begin{cases}bz=cy\\cx=az\\ay=bx\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{y}{b}=\frac{z}{c}\\\frac{z}{c}=\frac{x}{a}\\\frac{x}{a}=\frac{y}{b}\end{cases}}\RightarrowĐpcm\)
\(\frac{bz-cy}{a}\)=\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)=>\(\frac{a\left(bz-cy\right)}{a^2}\)=\(\frac{b\left(cx-az\right)}{b^2}\)=\(\frac{c\left(ay-bx\right)}{c^2}\)
=>\(\frac{abz-acy}{a^2}\)=\(\frac{bcx-abz}{b^2}\)\(\frac{cay-bcx}{c^2}\)=\(\frac{abz-acy+bcx-abz+cay-bcx}{a^2+b^2+c^2}\)= 0
=>\(\frac{bz-cy}{a}\)=\(\frac{cx-az}{b}\)=\(\frac{ay-bx}{c}\)= 0
=> bz - cy = cx - az = ay - bx = 0
+) bz - cy = 0 => bz = cy => y/b = z/c
+) cx - az = 0 => cx = az => x/a = z/c
=> x/a = y/b = z/c
\(b^2=ac\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=k\), ta có: \(a=bk;b=ck\)
\(\frac{a}{c}=\frac{bk}{c}=\frac{ck\times k}{c}=k^2\) (1)
\(\left(\frac{a+2012b}{b+2012c}\right)^2=\left(\frac{bk+2012b}{ck+2012}\right)^2=\left(\frac{b\left(k+2012\right)}{c\left(k+2012\right)}\right)^2=\left(\frac{b}{c}\right)^2=k^2\) (2)
Từ (1) và (2)
=> \(\frac{a}{c}=\left(\frac{a+2012b}{b+2012c}\right)^2\left(\text{đ}pcm\right)\)
Bài 1 :
\(a)\)\(A=\sqrt{23}+\sqrt{15}< \sqrt{25}+\sqrt{16}=5+4=9=\sqrt{81}< \sqrt{91}=B\)
Vậy \(A< B\)
\(b)\)\(A=\sqrt{17}+\sqrt{26}+1>\sqrt{16}+\sqrt{25}+1=4+5+1=10=\sqrt{100}>\sqrt{99}=B\)
Vậy \(A>B\)
Chúc bạn học tốt ~
Bài 2 :
\(a)\)\(A=\frac{3\sqrt{x}+3}{\sqrt{x}-2}=\frac{3\sqrt{x}-6}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=\frac{3\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\frac{9}{\sqrt{x}-2}=3+\frac{9}{\sqrt{x}-2}\)
Để A nguyên \(\Rightarrow\)\(9⋮\sqrt{x}-2\)\(\Rightarrow\)\(\sqrt{x}-2\inƯ\left(9\right)=\left\{1;-1;3;-3;9;-9\right\}\)
\(\sqrt{x}-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(9\) | \(-9\) |
\(x\) | \(9\) | \(1\) | \(25\) | \(\varnothing\) | \(121\) | \(\varnothing\) |
Vậy để A nguyên thì \(x\in\left\{1;9;25;121\right\}\)
Mấy câu còn lại tương tự
Chúc bạn học tốt ~
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
\(\frac{a+b}{b+3}=\frac{3+d}{d+a}=\frac{a+b+3+d}{b+3+d+a}=1\Rightarrow a+b=b+3\Rightarrow a=3\)
a) \(\left(x+\frac{1}{3}\right)^3=\frac{-8}{27}\)
\(\left(x+\frac{1}{3}\right)^3=\left(\frac{-2}{3}\right)^3\)
\(x+\frac{1}{3}=\frac{-2}{3}\)
\(x=-1\)
b) \(\left(\frac{1}{3}x+\frac{4}{3}\right)^2=\frac{25}{9}\)
\(\left(\frac{1}{3}x+\frac{4}{3}\right)^2=\left(\frac{5}{3}\right)^2\)
\(\frac{1}{3}x+\frac{4}{3}=\frac{5}{3}\)
\(\frac{1}{3}x=\frac{1}{3}\)
\(x=1\)
c) \(2^x+2^{x+1}=24\)
\(2^x+2^x.2=24\)
\(2^x.\left(1+2\right)=24\)
\(2^x.3=24\)
\(2^x=8\)
\(2^x=2^3\)
\(x=3\)
a, (x+1/3)^3 = -8/27
=>(x+1/3)^3 = (-2/3)^3
=>x+1/3 = -2/3
=>x = -1
b, (1/3x+4/3)^2 = 25/9
=>(1/3x+4/3)^2 = (5/3)^2
=>(1/3x+4/3) = 5/3
=>1/3x = 1/3
=> x = 1
c, 2^x + 2^x+1 = 24
=>2^x + 2^x . 2 = 24
=>2^x.(1+2) = 24
=>2^x . 3 = 24
=>2^x =8
=>2^x = 2^3
=> x = 3