Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,ấp dụng tính chất dãy tỉ số = nhau ta có:
\(\frac{a1-1}{100}\) =.....=\(\frac{a100-100}{1}\) =\(\frac{\left(a1+...+a100\right)-\left(1+...+100\right)}{100+99+..+1}\) = \(\frac{5050}{5050}\) = 1
từ \(\frac{a1-1}{100}\) = 1 suy ra :a1-1=100 =) a1=101
........................................................................
từ \(\frac{a100-100}{100}\) = 1 suy ra: a100-100=1 =) a100=101
vậy a1=a2=a3=...=a100=101
Cho tam giác ABC vuông ở A(AB < AC), đường cao AH, biết AB = 6cm. Đường trung trực của BC cắt các đường thẳng AB, AC, BC theo thứ tự ở D, E và F biết DE = 5cm, EF = 4cm. Chứng minh:
a) Tam giác FEC đồng dạng với tam giác FBD
b) Tam giác AED đồng dạng với tam giác HAC
c) Tính BC, AH, AC
Lời giải:
Với $a,b,c,d,e,f\in\mathbb{Z}^+$ ta có:
$\frac{a}{b}>\frac{c}{d}\Rightarrow ad>bc\Leftrightarrow ad-bc>0$
Mà $ad,bc$ đều nguyên nên từ đây suy ra $ad-bc\geq 1(*)$
Tương tự:
$\frac{c}{d}>\frac{e}{f}\Rightarrow cf-ed\geq 1(**)$
Từ $(*); (**)$ suy ra:
$d=d(af-be)=daf-dbe=(daf-bcf)+(bcf-dbe)$
$=f(ad-bc)+b(cf-ed)\geq f.1+b.1$
Hay $d\geq b+f$ (đpcm)
Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=\dfrac{e}{f}=\dfrac{a+b+c+d+e}{b+c+d+e+f}=k\)
Ta có:
\(\dfrac{a}{f}=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}.\dfrac{d}{e}.\dfrac{e}{f}=k^5=\left(\dfrac{a+b+c+d+e}{b+c+d+e+f}\right)^5\)
Đúng là góc học tập của cậu tràn trề đại số và rất ít hình học.