K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

Giả sử \(\overline{abcd}>\overline{efgh}\). Khi đó \(a>e\) nên suy ra \(b>f,c>g,d>h\).

Gọi \(x^2=\overline{abcd},y^2=\overline{efgh}\) thì \(x^2-y^2=\overline{nnnn}\) (số có 4 chữ số giống nhau).

Ở đây cần chặn \(32\le x,y\le99\)

Trường hợp 1: \(x^2-y^2=1111=11.101\)

Giải được \(x=56,y=45\). Suy ra \(\overline{abcd}=3136,\overline{efgh}=2025\) (nhận được).

Các trường hợp còn lại giải tương tự.

2 tháng 1 2019

CM: EFGH là hình vuông (bạn tự chứng minh nhé)

HD = EA = BF = CG = x

Ta có: AH = AD - HD = 4 - x (cm)

Áp dụng định lí Py-ta-go vào \(\Delta AHE\)

=> HE2 = AE2 + AH2

Diện tích hình vuông EFGH:

HE= x2 + ( 4 - x)2

       =  x2 + 16 - 8x + x2

       = 2x2 + 16 - 8x

       = 2.(x2 - 4x + 8)

       = 2.[(x - 2)2 + 4]

       = 2.(x - 2)2 + 8

Vì 2.(x - 2)2 \(\ge\)0

=> 2.(x - 2)2 + 8 \(\ge\)8

Dấu '=' xảy ra khi:

x - 2 = 0 => x = 2 (cm)

Vậy HD = 2cm thì hình vuông EFGH có diện tích nhỏ nhất là 8 cm2

Chúc bạn học tốt!!!

14 tháng 9 2017

ghé lại giúp mk vs

4 tháng 4 2018

a, chứng minh EFGH là hình bình hành do có EF//HG (cùng song2 với AC) và HE//GF(cùng song2 BD)

mà có EG=HF=> EFGH là hình thoi (*)

ta có BD//HE=> góc HEF vuông (**)

từ (*)(**) => EFGH là hình vuông ( hình thoi có 1 góc vuông )

4 tháng 4 2018

A B C D E F G H M

a) Dễ dàng chứng minh được \(\Delta AEH=\Delta BFE=\Delta CGF=\Delta DHG\)

\(\Rightarrow EH=EF=FG=HG\)

=>EFGH là hình thoi

\(\Delta AEH\)vuông cân tại A =>\(\widehat{AEH}=45^0\)

\(\Delta BEF\)vuông cân tại B=>\(\widehat{BEF}=45^0\)

=>\(\widehat{HEF}=90^0\)

=> EFGH  là hình vuông

b) Ta chứng minh được : \(\Delta EBC=\Delta FCD\left(cgv.cgv\right)\)

\(\Rightarrow\widehat{BCE}=\widehat{CDF}\)

\(\Rightarrow\widehat{BCE}+\widehat{MCD}=\widehat{CDF}+\widehat{MCD}\)

\(\Rightarrow90^0=\widehat{MCD}+\widehat{CDM}\)

\(\Rightarrow180^0-\widehat{MCD}-\widehat{CDM}=\widehat{DMC}\)

\(\Rightarrow\widehat{DMC}=90^0hayDF\perp CE\)

gọi N là giao điểm của AG và DF 

cm tương tự \(DF\perp CE\)ta được AG\(\perp\)DF

=>GN//CM mà G là trung điểm của DC =>N là trung điểm của DM

\(\Delta\)ADM có AN vừa là đường cao vừa là đường phân giác =>\(\Delta ADM\)cân tại A

c)ta cm \(\Delta DMC~\Delta DCF\left(g.g\right)\Rightarrow\frac{DC}{DF}=\frac{CM}{CF}\)

\(\Rightarrow\frac{S_{DMC}}{S_{DCF}}=\left(\frac{DC}{DF}\right)^2\Rightarrow S_{DMC}=\left(\frac{DC}{DF}\right)^2\cdot S_{DCF}\)

Mà \(S_{DCF}=\frac{1}{2}DF\cdot DC=\frac{1}{4}DC^2\)

Vậy \(S_{DMC}=\frac{DC^2}{DF^2}\cdot\frac{1}{4}DC^2\)

Trong tam giác DCF theo định lý py ta go có:

\(DF^2=CD^2+CF^2=CD^2+\left(\frac{1}{2}AB\right)^2=CD^2+\frac{1}{4}CD^2=\frac{5}{4}CD^2\)

 Do đó \(S_{DMC}=\frac{CD^2}{\frac{5}{4}CD^2}\cdot\frac{1}{4}CD^2=\frac{1}{5}CD^2=\frac{1}{5}a^2\)

25 tháng 7 2020

Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)

Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)

Do a<>c:

\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)

Phá ngoặc:

\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)

\(\Leftrightarrow bca-dca+bd^2-db^2=0\)

Phân tích đa thức thành nhân tử:

\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)

Do b<>d:

\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)

7 tháng 11 2017

E A D C B G H I K F O

b) Do \(\widehat{E}=\widehat{F}\) nên \(\widehat{AEG}=\widehat{GEB}=\widehat{BAI}=\widehat{IAC}\).
Từ đó ta chứng minh được \(\Delta EGA\) ~ \(\Delta AGO\) (g.g) .
Suy ra \(\widehat{EAB}=\widehat{AOG}=90^o\), vì vậy \(GH\perp IK\).
Xét tam giác EIH có EO là đường phân giác và có \(EO\perp IK\left(\widehat{O}=90^o\right)\) nên tam giác EIH cân tại E.
Suy ra OI = OK.
Chứng minh tương tự ta có \(GO=HO\).
Có \(GH\perp IK\) tại O và O là trung điểm của GH và IK nên tứ giác GKHI là hình thoi.

7 tháng 11 2017

Sao lại có góc BAI và góc IAC nhìn hình vẽ đâu có thành góc gì đâu bạn

9 tháng 3 2021

\(\orbr{\begin{cases}\\\end{cases}}\)