Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CM: EFGH là hình vuông (bạn tự chứng minh nhé)
HD = EA = BF = CG = x
Ta có: AH = AD - HD = 4 - x (cm)
Áp dụng định lí Py-ta-go vào \(\Delta AHE\)
=> HE2 = AE2 + AH2
Diện tích hình vuông EFGH:
HE2 = x2 + ( 4 - x)2
= x2 + 16 - 8x + x2
= 2x2 + 16 - 8x
= 2.(x2 - 4x + 8)
= 2.[(x - 2)2 + 4]
= 2.(x - 2)2 + 8
Vì 2.(x - 2)2 \(\ge\)0
=> 2.(x - 2)2 + 8 \(\ge\)8
Dấu '=' xảy ra khi:
x - 2 = 0 => x = 2 (cm)
Vậy HD = 2cm thì hình vuông EFGH có diện tích nhỏ nhất là 8 cm2
Chúc bạn học tốt!!!
a, chứng minh EFGH là hình bình hành do có EF//HG (cùng song2 với AC) và HE//GF(cùng song2 BD)
mà có EG=HF=> EFGH là hình thoi (*)
ta có BD//HE=> góc HEF vuông (**)
từ (*)(**) => EFGH là hình vuông ( hình thoi có 1 góc vuông )
A B C D E F G H M
a) Dễ dàng chứng minh được \(\Delta AEH=\Delta BFE=\Delta CGF=\Delta DHG\)
\(\Rightarrow EH=EF=FG=HG\)
=>EFGH là hình thoi
\(\Delta AEH\)vuông cân tại A =>\(\widehat{AEH}=45^0\)
\(\Delta BEF\)vuông cân tại B=>\(\widehat{BEF}=45^0\)
=>\(\widehat{HEF}=90^0\)
=> EFGH là hình vuông
b) Ta chứng minh được : \(\Delta EBC=\Delta FCD\left(cgv.cgv\right)\)
\(\Rightarrow\widehat{BCE}=\widehat{CDF}\)
\(\Rightarrow\widehat{BCE}+\widehat{MCD}=\widehat{CDF}+\widehat{MCD}\)
\(\Rightarrow90^0=\widehat{MCD}+\widehat{CDM}\)
\(\Rightarrow180^0-\widehat{MCD}-\widehat{CDM}=\widehat{DMC}\)
\(\Rightarrow\widehat{DMC}=90^0hayDF\perp CE\)
gọi N là giao điểm của AG và DF
cm tương tự \(DF\perp CE\)ta được AG\(\perp\)DF
=>GN//CM mà G là trung điểm của DC =>N là trung điểm của DM
\(\Delta\)ADM có AN vừa là đường cao vừa là đường phân giác =>\(\Delta ADM\)cân tại A
c)ta cm \(\Delta DMC~\Delta DCF\left(g.g\right)\Rightarrow\frac{DC}{DF}=\frac{CM}{CF}\)
\(\Rightarrow\frac{S_{DMC}}{S_{DCF}}=\left(\frac{DC}{DF}\right)^2\Rightarrow S_{DMC}=\left(\frac{DC}{DF}\right)^2\cdot S_{DCF}\)
Mà \(S_{DCF}=\frac{1}{2}DF\cdot DC=\frac{1}{4}DC^2\)
Vậy \(S_{DMC}=\frac{DC^2}{DF^2}\cdot\frac{1}{4}DC^2\)
Trong tam giác DCF theo định lý py ta go có:
\(DF^2=CD^2+CF^2=CD^2+\left(\frac{1}{2}AB\right)^2=CD^2+\frac{1}{4}CD^2=\frac{5}{4}CD^2\)
Do đó \(S_{DMC}=\frac{CD^2}{\frac{5}{4}CD^2}\cdot\frac{1}{4}CD^2=\frac{1}{5}CD^2=\frac{1}{5}a^2\)
Tách ra bạn có: \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+d}+\frac{d}{d+a}=2\Leftrightarrow1-\frac{a}{a+b}-\frac{b}{b+c}+1-\frac{c}{c+d}-\frac{d}{d+a}=0\)
Quy đồng: \(\Leftrightarrow\frac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\frac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)
\(\Leftrightarrow b\left(c-a\right)\left(a+b\right)\left(b+c\right)-d\left(c-a\right)\left(c+d\right)\left(d+a\right)=0\)
Do a<>c:
\(\Leftrightarrow b\left(a+b\right)\left(b+c\right)-d\left(c+d\right)\left(d+a\right)=0\)
Phá ngoặc:
\(\Leftrightarrow bad+bd^2+bca+bcd-dab-dac-db^2-cbd=0\)
\(\Leftrightarrow bca-dca+bd^2-db^2=0\)
Phân tích đa thức thành nhân tử:
\(\Leftrightarrow\left(b-d\right)\left(ca-bd\right)=0\)
Do b<>d:
\(\Rightarrow ca=bd\Rightarrow abcd=bd^2\)
E A D C B G H I K F O
b) Do \(\widehat{E}=\widehat{F}\) nên \(\widehat{AEG}=\widehat{GEB}=\widehat{BAI}=\widehat{IAC}\).
Từ đó ta chứng minh được \(\Delta EGA\) ~ \(\Delta AGO\) (g.g) .
Suy ra \(\widehat{EAB}=\widehat{AOG}=90^o\), vì vậy \(GH\perp IK\).
Xét tam giác EIH có EO là đường phân giác và có \(EO\perp IK\left(\widehat{O}=90^o\right)\) nên tam giác EIH cân tại E.
Suy ra OI = OK.
Chứng minh tương tự ta có \(GO=HO\).
Có \(GH\perp IK\) tại O và O là trung điểm của GH và IK nên tứ giác GKHI là hình thoi.
Sao lại có góc BAI và góc IAC nhìn hình vẽ đâu có thành góc gì đâu bạn
Giả sử \(\overline{abcd}>\overline{efgh}\). Khi đó \(a>e\) nên suy ra \(b>f,c>g,d>h\).
Gọi \(x^2=\overline{abcd},y^2=\overline{efgh}\) thì \(x^2-y^2=\overline{nnnn}\) (số có 4 chữ số giống nhau).
Ở đây cần chặn \(32\le x,y\le99\)
Trường hợp 1: \(x^2-y^2=1111=11.101\)
Giải được \(x=56,y=45\). Suy ra \(\overline{abcd}=3136,\overline{efgh}=2025\) (nhận được).
Các trường hợp còn lại giải tương tự.