K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2018

Vì hình bình hành ABCD có tâm I => I là trung điểm của AC và BC

Vì I là trung điểm AC

=> \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}\\y_I=\dfrac{y_A+y_C}{2}\end{matrix}\right.\)

=> xA = -2; yA = 5 => A(-2; 5)

Tương tự ta có D(7; 1)

NV
23 tháng 11 2021

\(sin^4a+cos^4a=\dfrac{5}{8}\)

\(\Leftrightarrow\left(sin^2a+cos^2a\right)^2-2sin^2a.cos^2a=\dfrac{5}{8}\)

\(\Leftrightarrow1-2sin^2a\left(1-sin^2a\right)=\dfrac{5}{8}\)

\(\Leftrightarrow2sin^4a-2sin^2a+\dfrac{3}{8}=0\Rightarrow\left[{}\begin{matrix}sin^2a=\dfrac{3}{4}\\sin^2a=\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}sina=\dfrac{\sqrt{3}}{2}\\sina=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a=150^0\\a=120^0\end{matrix}\right.\)

NV
22 tháng 11 2019

\(\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{CB}=\overrightarrow{AC}+\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{AC}-\overrightarrow{AB}-\overrightarrow{BD}\)

\(\Rightarrow2\overrightarrow{AB}=\overrightarrow{AC}-\overrightarrow{BD}\Rightarrow\overrightarrow{AB}=\frac{1}{2}\left(\overrightarrow{AC}-\overrightarrow{BD}\right)=\left(5;-\frac{7}{2}\right)\)

22 tháng 11 2019

A,(2;1) B(-2;-1) C(-5;4) D (5;-4)

22 tháng 11 2019

Áp dụng quy tắc hình bình hành ta có:

\(\left\{{}\begin{matrix}\overrightarrow{AB}+\overrightarrow{AD}=\widehat{AC}\\\overrightarrow{AD}-\overrightarrow{AB}=\overrightarrow{BD}\end{matrix}\right.\)

Từ hệ trên suy ra:
\(\overrightarrow{2AB}=\left(\overrightarrow{AB}+\overrightarrow{AD}\right)-\left(\overrightarrow{AD}-\overrightarrow{AB}\right)=\overrightarrow{AC}-\overrightarrow{BD}\)

\(\Leftrightarrow\overrightarrow{AB}=\frac{1}{2}\left(\overrightarrow{AC}-\overrightarrow{BD}\right)=\frac{1}{2}\left[7-\left(-3\right);-3-4\right]=\left(5;\frac{-7}{2}\right)\)

NV
4 tháng 6 2020

A là giao điểm AB và AD nên tọa độ thỏa mãn: \(\left\{{}\begin{matrix}x-2y+3=0\\2x+y-4=0\end{matrix}\right.\) \(\Rightarrow A\left(1;2\right)\)

Đường thẳng AD nhận \(\left(2;1\right)\) là 1 vtpt

Do B thuộc AB nên tọa độ B có dạng \(B\left(2b-3;b\right)\) \(\Rightarrow\overrightarrow{CB}=\left(2b-7;b-1\right)\)

\(BC//AD\Leftrightarrow2\left(2b-7\right)+1\left(b-1\right)=0\Rightarrow b=3\)

\(\Rightarrow B\left(3;3\right)\) \(\Rightarrow\overrightarrow{BC}=\left(1;-2\right)\)

\(\overrightarrow{BC}=\overrightarrow{AD}\Rightarrow D\left(2;0\right)\)

16 tháng 10 2016

TH1: \(x\le-2\)

<=>-2x-4+3-3x=5<=>-5x-1=5<=>-5x=6<=>\(x=-\frac{6}{5}\) (loại)

TH2: \(-2< x\le1\)

<=>2x+4+3-3x=5<=>7-x=5<=>x=2(loại)

TH3: x>1

<=>2x+4+3x-3=5<=>5x+1=5<=>5x=4<=>\(x=\frac{4}{5}\)(loại)

Vậy không có x thoả mãn đề bài

18 tháng 10 2016

Chị làm vội, trình bày ko cẩn thận mấy, chị biến đổi màu nhìn cho rõ ná =)))

Phương trình và hệ phương trình bậc nhất nhiều ẩn

19 tháng 4 2021

Áp dụng BĐT Cosi, ta có:

\(\frac{a}{9}\)+\(\frac{1}{a}\)>= 2.\(\frac{1}{3}\)=\(\frac{2}{3}\)

=> a+\(\frac{1}{a}\)=\(\frac{a}{9}\)+\(\frac{8a}{9}\)+\(\frac{1}{a}\)>= \(\frac{2}{3}\)+\(\frac{8a}{9}\)>= \(\frac{2}{3}\)+\(\frac{8.3}{9}\)=\(\frac{10}{3}\)

Vậy GTNN của P là: \(\frac{10}{3}\), tại a=3