K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2015

ban oi cai cho b2 co dau ngoac ko ban

neu co thi tu tren = a3 - b3 - (a3 + b3)

                        =a3- b3 -a- b3 = -2b3

25 tháng 6 2017

a) Biến đổi VT ta có :

(a2-b2)2 + (2ab)2

= a4 -2a2+b4+4a2b2

= a4+2a2b2 +b4

= (a2b2)2 = VP (đpcm)

hiha

25 tháng 6 2017

b) Biến đổi vế trái ta có :

(ax+b)2 + (a-bx)2+cx2+c2

= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2

= (a2+b2+c2) + x2(a2+b2+c2)

= (a2+b2+c2) (x2+1) = VP (đpcm)

oaoa

30 tháng 10 2020

Không có mô tả.

30 tháng 10 2020

a) Ta có: \(VP=x^4-y^4\)

\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)

\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=VP\)(đpcm)

b) Ta có: \(VT=\left(a-b\right)\left(a^2+b^2+ab\right)-\left(a+b\right)\left(a^2+b^2-ab\right)\)

\(=a^3-b^3-\left(a^3+b^3\right)\)

\(=a^3-b^3-a^3-b^3\)

\(=-2b^3=VP\)(đpcm)

16 tháng 6 2015

bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu

10 tháng 4 2016

2)

a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400

b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000

c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000

4)

a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x

b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x

20 tháng 6 2018

Đề có sao không?

20 tháng 6 2018

VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)

= a3 - b3 - a3 - b3

= -2b3

Vậy (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2) = -2b3.

b: \(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)

\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)

d: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)-8\)

\(=\left(x^2+3x\right)\left(x^2+3x+2\right)-8\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)-8\)

\(=\left(x^2+3x+4\right)\left(x^2+3x-2\right)\)

22 tháng 6 2018

\(a)\) Ta có : 

\(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=49-20=29\)

Vậy \(A=29\)

\(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=7\left(29-10\right)=7.19=133\)

Vậy \(B=133\)

\(b)\) Đặt \(A=-x^2+x-1\) ta có : 

\(-A=x^2-x+1\)

\(-A=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)

\(-A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)

\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le\frac{3}{4}< 0\)

Vậy \(A< 0\) với mọi số thực x 

Chúc bạn học tốt ~ 

7 tháng 8 2018

a) \(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)

\(=ab^2+ac^2+abc+bc^2+ba^2+abc+ca^2+cb^2+abc\)

\(=\left(ab^2+abc+ba^2\right)+\left(ac^2+ca^2+abc\right)+\left(bc^2+abc+cb^2\right)\)

\(=ab\left(b+c+a\right)+ac\left(c+a+b\right)+bc\left(c+a+b\right)\)

\(=\left(a+b+c\right)\left(ab+ac+bc\right)\)

b) \(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(=ab^2+ac^2+abc+bc^2+ba^2+abc+ca^2+cb^2+abc-abc\)

\(=\left(ab^2+ba^2\right)+\left(ac^2+bc^2\right)+\left(abc+cb^2\right)+\left(abc+ca^2\right)\)

\(=ab\left(a+b\right)+c^2\left(a+b\right)+cb\left(a+b\right)+ca\left(b+a\right)\)

\(=\left(a+b\right)\left(ab+c^2+bc+ac\right)\)

\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(c+b\right)\right]\)

\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

c) \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)

\(=a\left(a^3+3a^2.2b+3a4b^2+8b^3\right)-b\left(8a^3+3.4a^2.b+3.2a.b^2+b^3\right)\)

\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)

\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2-6ab^3-b^4\)

\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)

\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)

\(=\left(a^2-b^2\right)\left(a^2+b^2\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)

\(=\left(a^2-b^2\right)\left(a^2+b^2\right)+6ab\left(a^2-b^2\right)-8ab\left(a^2-b^2\right)\)

\(=\left(a^2-b^2\right)\left(a^2+b^2+6ab-8ab\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2-2ab\right)\)

\(=\left(a-b\right)\left(a+b\right)\left(a-b\right)^2\)

\(=\left(a-b\right)^3\left(a+b\right)\)

7 tháng 8 2018

ôi cảm ơn b nhiều lắm