Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Biến đổi VT ta có :
(a2-b2)2 + (2ab)2
= a4 -2a2+b4+4a2b2
= a4+2a2b2 +b4
= (a2b2)2 = VP (đpcm)
b) Biến đổi vế trái ta có :
(ax+b)2 + (a-bx)2+cx2+c2
= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2
= (a2+b2+c2) + x2(a2+b2+c2)
= (a2+b2+c2) (x2+1) = VP (đpcm)
a) Ta có: \(VP=x^4-y^4\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\)
\(=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\)
\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)=VP\)(đpcm)
b) Ta có: \(VT=\left(a-b\right)\left(a^2+b^2+ab\right)-\left(a+b\right)\left(a^2+b^2-ab\right)\)
\(=a^3-b^3-\left(a^3+b^3\right)\)
\(=a^3-b^3-a^3-b^3\)
\(=-2b^3=VP\)(đpcm)
bạn phải tách từng câu ra. chứ kiểu này k ai trả lời cho đâu
2)
a)x2-y2=(x+y).(x-y)=(87+13).(87-13)=100.74=7400
b)x3-3x2+3x-1=(x-1)3=(101-1)3=1003=1000000
c)x3+9x2+27x+27=(x+3)3=(97+3)3=1003=1000000
4)
a)x2-6x+10=x2-6x+9+1=(x-3)2+1>=1>0 voi moi x
b)4x-x2-5= -(x2-4x+5)= -(x2-4x+4+1)= -(x-2)2 - 1<0 voi moi x
b: \(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
\(=\left(x^2+x+6\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+6\right)\left(x+2\right)\left(x-1\right)\)
d: \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)-8\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)-8\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)-8\)
\(=\left(x^2+3x+4\right)\left(x^2+3x-2\right)\)
\(a)\) Ta có :
\(A=a^2+b^2=\left(a+b\right)^2-2ab=7^2-2.10=49-20=29\)
Vậy \(A=29\)
\(B=a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=7\left(29-10\right)=7.19=133\)
Vậy \(B=133\)
\(b)\) Đặt \(A=-x^2+x-1\) ta có :
\(-A=x^2-x+1\)
\(-A=\left(x^2-x+\frac{1}{4}\right)+\frac{3}{4}\)
\(-A=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(A=-\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\le\frac{3}{4}< 0\)
Vậy \(A< 0\) với mọi số thực x
Chúc bạn học tốt ~
a) \(a\left(b^2+c^2+bc\right)+b\left(c^2+a^2+ac\right)+c\left(a^2+b^2+ab\right)\)
\(=ab^2+ac^2+abc+bc^2+ba^2+abc+ca^2+cb^2+abc\)
\(=\left(ab^2+abc+ba^2\right)+\left(ac^2+ca^2+abc\right)+\left(bc^2+abc+cb^2\right)\)
\(=ab\left(b+c+a\right)+ac\left(c+a+b\right)+bc\left(c+a+b\right)\)
\(=\left(a+b+c\right)\left(ab+ac+bc\right)\)
b) \(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
\(=ab^2+ac^2+abc+bc^2+ba^2+abc+ca^2+cb^2+abc-abc\)
\(=\left(ab^2+ba^2\right)+\left(ac^2+bc^2\right)+\left(abc+cb^2\right)+\left(abc+ca^2\right)\)
\(=ab\left(a+b\right)+c^2\left(a+b\right)+cb\left(a+b\right)+ca\left(b+a\right)\)
\(=\left(a+b\right)\left(ab+c^2+bc+ac\right)\)
\(=\left(a+b\right)\left[a\left(b+c\right)+c\left(c+b\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(a+c\right)\)
c) \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a\left(a^3+3a^2.2b+3a4b^2+8b^3\right)-b\left(8a^3+3.4a^2.b+3.2a.b^2+b^3\right)\)
\(=a\left(a^3+6a^2b+12ab^2+8b^3\right)-b\left(8a^3+12a^2b+6ab^2+b^3\right)\)
\(=a^4+6a^3b+12a^2b^2+8b^3a-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4+6a^3b+8b^3a-8a^3b-6ab^3-b^4\)
\(=\left(a^4-b^4\right)+\left(6a^3b-6ab^3\right)+\left(8b^3a-8a^3b\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)+6ab\left(a^2-b^2\right)+8ab\left(b^2-a^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2\right)+6ab\left(a^2-b^2\right)-8ab\left(a^2-b^2\right)\)
\(=\left(a^2-b^2\right)\left(a^2+b^2+6ab-8ab\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2-2ab\right)\)
\(=\left(a-b\right)\left(a+b\right)\left(a-b\right)^2\)
\(=\left(a-b\right)^3\left(a+b\right)\)
ban oi cai cho b2 co dau ngoac ko ban
neu co thi tu tren = a3 - b3 - (a3 + b3)
=a3- b3 -a3 - b3 = -2b3