Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(abc-cba=6b3\)
\(\Rightarrow100a+10b+c-100c-10b-a=6b3\)
\(\Rightarrow99a-99c=6b3\)
\(\Rightarrow99.\left(a-c\right)=6b3\)
Vì 99.(a-c):99=> 6b3 :99
\(\Rightarrow b=9\Rightarrow a-c=7\)
Bn tính nốt nha
Ta có: \(\overline{abc}-\overline{cba}=495\)
\(\Rightarrow100a+10b+c-100c-10b-a=495\)
\(\Rightarrow99a-99c=495\)
\(\Rightarrow99.\left(a-c\right)=495\Rightarrow a-c=5\Rightarrow a=5+c\)
Mà \(b^2=\overline{ac}\Rightarrow b^2=10a+c\)
=> \(b^2=10.\left(5+c\right)+c=50+11c\)
Vì \(\overline{ac}\) có 2 chữ số nên:
b^2 < 100
Mà b^2 > 50
=> b^2 thuộc 64,81
b^2 = 64 => 11c = 14 (vô lí)
b^2 = 81 => 11c = 31 (vô lí)
Vậy không có abc thỏa mãn
Câu hỏi của Phương Còi - Toán lớp 6 - Học toán với OnlineMath
100\(\le\)\(n^2\)-1=\(\overline{abc}\)\(\le\)999
\(\Rightarrow\)100<101\(\le\)\(n^2\)=\(\overline{abc}\)+1\(\le\)1000
\(\Rightarrow\)\(10^2\)<\(n^2\)<\(32^2\)\(\Rightarrow\)10<n<32
\(\overline{abc}\)-\(\overline{cba}\)=\(n^2\)-1-\(n^2\)+4n-4
\(\overline{abc}\)-\(\overline{cba}\)=(\(n^2\)-\(n^2\))+4n-1-4
\(\overline{abc}\)-\(\overline{cba}\)=0+4n-5
(100.a+10.b+c)-(100c+10b+a)=4n-5
99a-99c=4n-5
\(\Rightarrow\)4n-5\(⋮\)99(1)
Vì 10<n<32\(\Rightarrow\)35<4n<123(2)
Từ (1) và(2) \(\Rightarrow\)4n-5=99
\(\Rightarrow\)n=99+5 :4 =26
\(\overline{abc}\)=\(26^2\)-1
\(\overline{abc}\)=675
\(\overline{cba}\)=576
a) Ta có : ab + ba = a . 10 + b + b . 10 + a
= a . (10 + 1) + b . ( 1 + 10)
= a . 11 + b . 11
= (a + b) . 11 \(⋮\)11
b)Ta có : abc - cba = (a . 100 + b . 10 + c) - (c . 100 + b . 10 + a)
= a . 100 + b . 10 + c - c . 100 - b . 10 - a
= a . (100 - 1) + (b . 10 - b . 10) + c . (1 - 100)
= a . 99 + 0 + c . ( - 99)
= (a - c) . 99 \(⋮\)99
c) tự làm
a) ab + ba = 10a + b + 10b + a
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11.
b)abc - cba = 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 99(a - c) \(⋮\)99
=> abc - cba \(⋮\)99
c)aaa + bbb = 100a + 10a + a + 100b + 10b + b
= 100(a +b) + 10(a + b) + (a + b)
= (a + b)(100 + 10 + 1)
= (a + b) 111
= (a + b) . 3 . 37 \(⋮\)37
=> aaa + bbb \(⋮\)37
a, (abc -cba)
= 100a+10b+c -(100c+10b+a)
=100a + 10b +c -100c -10b- a
=99a -99c
=99. (a-c)
=9.11(a-c) chia hết cho 11
hok tốt !
\(\begin{cases}100a+10b+c=n^2-1\left(1\right)\\100c+10b+a=n^2-4n+4\left(2\right)\end{cases}\)
Lấy (2) trừ (1) theo vế được :
\(99\left(c-a\right)=5-4n\)
Mặt khác, ta có \(100\le n^2-1\le999\) nên \(11\le n\le31\)
Xét n trong khoảng trên được n = 26 thỏa mãn bài toán.
a.100 + 10.b + c − 100c − 10b − a = 6b3
99a − 99c = 6b3
99 a − c = 6b3
Từ đây ta thấy 99.7 = 693
Nên b=9
Suy ra a-c=7
Từ đó thử trường hợp 9 và 2 hoặc 8 với 1
Tìm được a=8;b=9;c=1
làm ơn giúp mk nhé