\(\dfrac{a}{3}=\dfrac{b}{4};\dfrac{b}{2}=\dfrac{c}{5}\)và a-c+b=3
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2021

\(\dfrac{b}{2}=\dfrac{c}{5}\Rightarrow\dfrac{b}{4}=\dfrac{c}{10}\)

\(\Rightarrow\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{10}=\dfrac{a-c+b}{3-10+4}=\dfrac{3}{-3}=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=\left(-1\right).3=-3\\b=\left(-1\right).4=-4\\c=\left(-1\right).10=-10\end{matrix}\right.\)

18 tháng 7 2018

\(a,Tacó:\\ \dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=\dfrac{a^3}{2^3}=\dfrac{a\cdot a\cdot a}{2\cdot2\cdot2}=\dfrac{a\cdot b\cdot c}{2\cdot3\cdot5}=\dfrac{810}{30}=27\\ \Rightarrow\left\{{}\begin{matrix}a=27\cdot2=54\\b=27\cdot3=81\\c=27\cdot5=135\end{matrix}\right.\\ Vậy...\)

Các câu khác cx cùng dạng tương tự bn tự làm nha!

24 tháng 7 2018

a, \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}\) và a . b . c = 810

Đặt \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{5}=k\)

=> \(\left\{{}\begin{matrix}a=2k\\b=3k\\c=5k\end{matrix}\right.\)

Mà a . b . c = 810

=> 2k . 3k . 5k = 810

=> 30\(k^3\) = 810

=> \(k^3=810:30\)

=> \(k^3=27\)

=> \(k^3=3^3\)

=> k = 3

=> \(a=2.3=6\)

\(b=3.3=9\)

\(c=5.3=15\)

Vậy .....

b, \(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{9}\)và a - 3b + 4c = 62

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{a}{4}=\dfrac{b}{3}=\dfrac{c}{9}=\dfrac{a-3b+4c}{4-3.3+4.9}=\dfrac{62}{31}=2\)

=> \(\dfrac{a}{4}=2\Rightarrow a=8\)

\(\dfrac{b}{3}=2\Rightarrow b=6\)

\(\dfrac{c}{9}=2\Rightarrow c=18\)

Vậy .......

17 tháng 11 2018

a) Ta có:

+) a/2=b/3

=>a=2b/3

+) b/5=c/4

=>c=4b/5

Lại có:

a-b+c=49

=> 2b/3 -b + 4b/5 =49

=> 7b/15==49

=> b= 105

Khi đó:

+) a=2b/3=2.105/3=70

+)c=4b/5=4.105/5=84

Vậy a=70; b=105; c=84...

chúc bạn học tốthihi

19 tháng 11 2018

thank!

10 tháng 6 2017

\(\dfrac{a}{2}=\dfrac{b}{3}\Rightarrow\dfrac{a}{10}=\dfrac{b}{15};\dfrac{b}{5}=\dfrac{c}{4}\Rightarrow\dfrac{b}{15}=\dfrac{c}{12}.\)

Do đó : \(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{-49}{7}=-7.\)

\(\Rightarrow a=-70;b=-105;c=-84.\)

5 tháng 7 2017

Theo đề bài: \(\dfrac{a}{2}=\dfrac{b}{3}\); \(\dfrac{b}{5}=\dfrac{c}{4}\)

\(\Rightarrow\) \(\dfrac{a}{10}=\dfrac{b}{15}\); \(\dfrac{b}{15}=\dfrac{c}{12}\)

\(\Rightarrow\) \(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{10}=\dfrac{b}{15}=\dfrac{c}{12}=\dfrac{a-b+c}{10-15+12}=\dfrac{-49}{7}=-7\)

\(\Rightarrow\dfrac{a}{10}=-7\Rightarrow a=-70\)

\(\dfrac{b}{15}=-7\Rightarrow b=-105\)

\(\dfrac{c}{12}=-7\Rightarrow c=-84\)

Vậy \(a=-70\); \(b=-105\); \(c=-84\)

19 tháng 7 2017

a,

\(a+b=-9\\ b+c=2\\ c+a=-3\\ \Rightarrow a+b+b+c+c+a=\left(-9\right)+2+\left(-3\right)\\ 2a+2b+2c=-10\\ 2\left(a+b+c\right)=-10\\ a+b+c=-5\\ a+b=-9\\ \Rightarrow a+b+c=-5\Leftrightarrow\left(-9\right)+c=-5\Rightarrow c=4\\ b+c=2\\ \Rightarrow a+b+c=-5\Leftrightarrow a+2=-5\Rightarrow a=-7\\ c+a=-3\\ \Rightarrow a+b+c=-5\Leftrightarrow\left(-3\right)+b=-5\Rightarrow b=-2\)

Vậy \(a=-7;b=-2;c=5\)

b,

\(a+b=\dfrac{1}{2}\\ b+c=\dfrac{3}{4}\\ c+a=\dfrac{-5}{6}\\ \Rightarrow a+b+b+c+c+a=\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{-5}{6}\\ 2a+2b+2c=\dfrac{6}{12}+\dfrac{9}{12}+\dfrac{-10}{12}\\ 2\left(a+b+c\right)=\dfrac{5}{12}\\ a+b+c=\dfrac{5}{24}\\ a+b=\dfrac{1}{2}\\ \Rightarrow a+b+c=\dfrac{5}{24}\Leftrightarrow\dfrac{1}{2}+c=\dfrac{5}{24}\Rightarrow c=\dfrac{-7}{24}\\ b+c=\dfrac{3}{4}\\ \Rightarrow a+b+c=\dfrac{5}{24}\Leftrightarrow a+\dfrac{3}{4}=\dfrac{5}{24}\Rightarrow a=\dfrac{-13}{24}\\ a+c=\dfrac{-5}{6}\\ \Rightarrow a+b+c=\dfrac{5}{24}\Leftrightarrow b+\dfrac{-5}{6}=\dfrac{5}{24}\Rightarrow b=\dfrac{25}{24}\)

Vậy \(a=\dfrac{-13}{24};b=\dfrac{25}{24};c=\dfrac{-7}{24}\)

c,

\(a+b=2\\ b+c=6\\ c+a=3\\ \Rightarrow a+b+b+c+c+a=2+6+3\\ 2a+2b+2c=11\\ 2\left(a+b+c\right)=11\\ a+b+c=5,5\\ a+b=2\\ \Rightarrow a+b+c=5,5\Leftrightarrow2+c=5,5\Rightarrow c=3,5\\ b+c=6\\ \Rightarrow a+b+c=5,5\Leftrightarrow a+6=5,5\Rightarrow a=-0,5\\ c+a=3\\ \Rightarrow a+b+c=5,5\Leftrightarrow b+3=5,5\Rightarrow b=2,5\)

Vậy \(a=-0,5;b=2,5;c=3,5\)

d,

\(a+b=\dfrac{5}{6}\\ b+c=\dfrac{3}{4}\\ c+a=\dfrac{5}{3}\\ \Rightarrow a+b+b+c+c+a=\dfrac{5}{6}+\dfrac{3}{4}+\dfrac{5}{3}\\ 2a+2b+2c=\dfrac{10}{12}+\dfrac{9}{12}+\dfrac{20}{12}\\ 2\left(a+b+c\right)=\dfrac{13}{4}\\ a+b+c=\dfrac{13}{8}\\ a+b=\dfrac{5}{6}\\ \Rightarrow a+b+c=\dfrac{13}{8}\Leftrightarrow\dfrac{5}{6}+c=\dfrac{13}{8}\Rightarrow c=\dfrac{19}{24}\\ b+c=\dfrac{3}{4}\\ \Rightarrow a+b+c=\dfrac{13}{8}\Leftrightarrow a+\dfrac{3}{4}=\dfrac{13}{8}\Rightarrow a=\dfrac{7}{8}\\ c+a=\dfrac{5}{3}\\ \Rightarrow a+b+c=\dfrac{13}{8}\Leftrightarrow b+\dfrac{5}{3}=\dfrac{13}{8}\Rightarrow b=\dfrac{-1}{24}\)

Vậy \(a=\dfrac{7}{8};b=\dfrac{-1}{24};c=\dfrac{19}{24}\)

19 tháng 7 2017

\(\left\{{}\begin{matrix}a+b=-9\\b+c=2\\c+a=-3\end{matrix}\right.\)

\(\Rightarrow a+b+b+c+c+a=\left(-9\right)+2+\left(-3\right)\)

\(\Rightarrow2a+2b+2c=-10\)

\(\Rightarrow2\left(a+b+c\right)=-10\)

\(\Rightarrow a+b+c=-5\)

\(\Rightarrow\left\{{}\begin{matrix}c=-5-9=-14\\a=-5-2=-7\\b=-5-\left(-3\right)=-2\end{matrix}\right.\)

30 tháng 6 2017

1) Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{2010}=\dfrac{2010}{a}=\dfrac{a+b+c+2010}{b+c+2010+a}=1\)

\(\dfrac{2010}{a}=1\Rightarrow a=2010\);

\(\dfrac{c}{2010}=1\Rightarrow c=2010\);

\(\dfrac{b}{c}=1\Rightarrow\dfrac{b}{2010}=1\Rightarrow b=2010\).

Vậy (a, b, c) = (2010; 2010; 2010)

3)

a) \(A=\sqrt{x+24}+\dfrac{4}{7}\)

Có: \(\sqrt{x+24}\ge0\forall x\in R\)

\(\Rightarrow\sqrt{x+24}+\dfrac{4}{7}\ge\dfrac{4}{7}\forall x\in R\)

\(\Rightarrow A\ge\dfrac{4}{7}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+24}=0\Rightarrow x+24=0\Rightarrow x=-24\)

Vậy GTNN của \(A=\dfrac{4}{7}\Leftrightarrow x=-24\)

b) \(B=\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\)

Có: \(\sqrt{2x+\dfrac{4}{13}}\ge0\forall x\in R\)

\(\Rightarrow\sqrt{2x+\dfrac{4}{13}}-\dfrac{13}{191}\ge-\dfrac{13}{191}\forall x\in R\)

\(\Rightarrow B\ge-\dfrac{13}{191}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{2x+\dfrac{4}{13}}=0\)

\(\Rightarrow2x+\dfrac{4}{13}=0\)

\(\Rightarrow2x=-\dfrac{4}{13}\)

\(\Rightarrow x=-\dfrac{2}{13}\)

Vậy GTNN của \(B=-\dfrac{13}{191}\Leftrightarrow x=-\dfrac{2}{13}\)

4)

a) \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\)

Có: \(\sqrt{x+\dfrac{5}{41}}\ge0\forall x\in R\)

\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}\le0\forall x\in R\)

\(\Rightarrow-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\forall x\in R\)

\(\Rightarrow A\le\dfrac{7}{12}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x+\dfrac{5}{41}}=0\)

\(\Rightarrow x+\dfrac{5}{41}=0\)

\(\Rightarrow x=-\dfrac{5}{41}\)

Vậy GTLN của \(A=\dfrac{7}{12}\Leftrightarrow x=-\dfrac{5}{41}\)

b) \(B=\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\)

Có: \(\sqrt{x-\dfrac{2}{3}}\ge0\forall x\in R\)

\(\Rightarrow-\sqrt{x-\dfrac{2}{3}}\le0\forall x\in R\)

\(\Rightarrow\dfrac{-5}{13}-\sqrt{x-\dfrac{2}{3}}\le\dfrac{-5}{13}\forall x\in R\)

\(\Rightarrow B\le\dfrac{-5}{13}\forall x\in R\)

Đẳng thức xảy ra \(\Leftrightarrow\sqrt{x-\dfrac{2}{3}}=0\)

\(\Rightarrow x-\dfrac{2}{3}=0\)

\(\Rightarrow x=\dfrac{2}{3}\)

Vậy GTLN của \(B=\dfrac{-5}{13}\Leftrightarrow x=\dfrac{2}{3}\)

1 tháng 7 2017

làm giup minh bai 2 luon nha

khocroi

10 tháng 8 2018

\(xy-3x-y=6\)

\(=>xy+3x-y-3=6-3\)

\(=>x\left(y+3\right)-\left(y+3\right)=3\)

\(=>\left(y+3\right)\left(x-1\right)=3\)

y+3 -1 3 1 -3
x-1 -3 1 3 -1

y+3 -1 3 -3 1
y -4 -1 -7 -3

x-1 -3 1 3 -1
x -2 2 4 0

27 tháng 7 2017

\(\dfrac{a}{3}=\dfrac{b}{2};\dfrac{b}{7}=\dfrac{c}{5}\)

\(\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau,ta có:

\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{a-b-c}{21-14-10}=\dfrac{-9}{-3}=3\)

\(\dfrac{a}{21}=3\Rightarrow a=63\)

\(\dfrac{b}{14}=3\Rightarrow b=42\)

\(\dfrac{c}{10}=3\Rightarrow c=30\)

Vậy......

Các câu còn lại tương tự

23 tháng 11 2017

1. \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Rightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)

\(\Rightarrow\left\{{}\begin{matrix}a=5\times2=10\\b=5\times3=15\\c=5\times4=20\end{matrix}\right.\)

23 tháng 11 2017

1. \(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\Rightarrow a=10;b=15;c=20\)

26 tháng 6 2017

Giải:

a) Theo đề ra, ta có:

\(\dfrac{a}{b}=\dfrac{5}{7}\)\(a+b=72\) (Sửa x+y =72)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}\)

\(\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)

\(\Rightarrow\dfrac{a}{5}=6\Rightarrow a=6.5=30\)

\(\Rightarrow\dfrac{b}{7}=6\Rightarrow b=6.7=42\)

Vậy ...

b) Theo đề ra, ta có:

\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}\)\(a+b-c=21\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Leftrightarrow\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)

\(\Rightarrow\dfrac{a}{6}=3\Rightarrow a=3.6=18\)

\(\Rightarrow\dfrac{b}{4}=3\Rightarrow b=3.4=12\)

\(\Rightarrow\dfrac{c}{3}=3\Rightarrow a=3.3=9\)

Vậy ...

c) Theo đề ra, ta có:

\(\dfrac{12}{x}=\dfrac{3}{y}\)\(x-y=36\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}\)

\(\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)

\(\Rightarrow\dfrac{x}{12}=4\Rightarrow x=12.4=48\)

\(\Rightarrow\dfrac{y}{3}=4\Rightarrow x=3.4=12\)

Vậy ...

d) Theo đề ra, ta có:

\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}\)\(a+b-c=20\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\Leftrightarrow\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}=\varnothing\)

Đề câu này sai nhé!

Chúc bạn học tốt!

26 tháng 6 2017

a) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\dfrac{a}{b}=\dfrac{5}{7}\Leftrightarrow\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{a+b}{5+7}=\dfrac{72}{12}=6\)

\(\Rightarrow\left\{{}\begin{matrix}a=5.6=30\\b=7.6=42\end{matrix}\right.\)

b) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a+b-c}{6+4-3}=\dfrac{21}{7}=3\)

\(\Rightarrow\left\{{}\begin{matrix}a=6.3=18\\b=4.3=12\\c=3.3=9\end{matrix}\right.\)

c) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\dfrac{12}{x}=\dfrac{3}{y}\Leftrightarrow\dfrac{x}{12}=\dfrac{y}{3}=\dfrac{x-y}{12-3}=\dfrac{36}{9}=4\)

\(\Rightarrow\left\{{}\begin{matrix}x=12.4=48\\y=3.4=12\end{matrix}\right.\)

d) Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a+b-c}{2+5-7}=\dfrac{20}{0}\) (Vô lý)

=> Không thể làm

17 tháng 6 2017

Bài 1:

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a, Ta có: \(\dfrac{a+c}{c}=\dfrac{bk+dk}{dk}=\dfrac{\left(b+d\right)k}{dk}=\dfrac{b+d}{d}\)

\(\Rightarrowđpcm\)

b, Ta có: \(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\) (1)

\(\dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

c, Ta có: \(\dfrac{a-c}{a}=\dfrac{bk-dk}{bk}=\dfrac{k\left(b-d\right)}{bk}=\dfrac{b-d}{b}\)

\(\Rightarrowđpcm\)

d, Ta có: \(\dfrac{3a+5b}{2a-7b}=\dfrac{3bk+5b}{2bk-7b}=\dfrac{b\left(3k+5\right)}{b\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\)(1)

\(\dfrac{3c+5d}{2c-7d}=\dfrac{3dk+5d}{2dk-7d}=\dfrac{d\left(3k+5\right)}{d\left(2k-7\right)}=\dfrac{3k+5}{2k-7}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

e, Sai đề

f, \(\left(\dfrac{a-b}{c-d}\right)^{2012}=\left(\dfrac{bk-b}{dk-d}\right)^{2012}=\left[\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right]^{2012}=\dfrac{b^{2012}}{d^{2012}}\)(1)

\(\dfrac{a^{2012}+b^{2012}}{c^{2012}+d^{2012}}=\dfrac{b^{2012}k^{2012}+b^{2012}}{d^{2012}k^{2012}+d^{2012}}=\dfrac{b^{2012}\left(k^{2012}+1\right)}{d^{2012}\left(k^{2012}+1\right)}=\dfrac{b^{2012}}{d^{2012}}\) (2)

Từ (1), (2) \(\Rightarrowđpcm\)

17 tháng 6 2017

Hâm mộ :)))))