Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(x^3-2x^2-x+2=\left(x-1\right)\left(x+1\right)\left(x-2\right)\)nên từ giả thiết ta có:
\(f\left(x\right)=\left(x-1\right)\left(x+1\right)\left(x-2\right)q\left(x\right)+1\)
Suy ra \(\hept{\begin{cases}f\left(1\right)=1&f\left(-1\right)=1&f\left(2\right)=1\end{cases}\Rightarrow\hept{\begin{cases}a+b+c=1\\a-b+c=7\\4a+2b+c=1\end{cases}\Rightarrow}\hept{\begin{cases}a=1\\b=-3\\c=3\end{cases}}}\)
a) \(\hept{\begin{cases}f\left(2\right)=156\\f\left(-3\right)=156\\f\left(-1\right)=132\end{cases}\Rightarrow\hept{\begin{cases}4a+2b+c=156\\9a-3b+c=156\\a-b+c=132\end{cases}\Rightarrow}\hept{\begin{cases}4a+2b+132-a+b=156\\9a-3b+132-a+b=156\\c=132-a+b\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}3a+3b=24\\8a-2b=24\\c=132-a+b\end{cases}\Rightarrow\hept{\begin{cases}a+b=8\\-4a+b=-12\\c=132-a+b\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}5a=20\\b=8-a\\c=132-a+b\end{cases}\Rightarrow\hept{\begin{cases}a=4\\b=4\\c=132\end{cases}}}\)
b) \(f\left(x\right)=4x^2+4x+132=4x^2+2x+2x+1+131=2x\left(2x+1\right)+\left(2x+1\right)+131\)
\(=\left(2x+1\right)^2+131\)
\(\left(2x+1\right)^2\ge0\forall x\Rightarrow f\left(x\right)\ge131\forall x\). Vậy \(f\left(x\right)\ne0\forall x\)
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
ĐỀ bài em sai nhé
Cho \(f\left(x\right)=ax^{2^{ }}+bx+c\)
suy ra \(f\left(x_0\right)=0\Rightarrow f\left(x_0\right)=ax_0^{2^{ }}+bx_0+c=0\)
\(g\left(x\right)=cx^{2^{ }}+bx+a\Rightarrow g\left(\frac{1}{x_0}\right)=c.\left(\frac{1}{x_0}\right)^2+b.\frac{1}{x_0}+a\)
\(\Rightarrow g\left(\frac{1}{x_0}\right)=\frac{c}{x_0^2}+\frac{b}{x_0}+a=\frac{c+bx_0+ax^2_0}{x_0^2}=\frac{f\left(x_0\right)}{x_0^2}=0\) (với x0 khác 0)
f(x)=g(x)
<=>(a+4)x3-4x2-4x+8=x3-4bx2-4x+c-3
Đồng nhất thức ta được
a+4=1 a=-3
-4=-4b <=> b=1
8=c-3 c=11
Ta có: \(f\left(x\right)⋮x-2\) nên \(f\left(x\right)=q.\left(x-2\right)\)
\(\Rightarrow f\left(2\right)=0\Rightarrow8+4a+2b+c=0\) ( 1 )
- \(f\left(x\right):x^2-1\) thì được dư là 2x
\(\Rightarrow f\left(x\right)=r.\left(x^2-1\right)+2x\)
\(\Rightarrow f\left(1\right)=2\) và \(f\left(-1\right)=-2\)
Có: \(f\left(1\right)=2\Rightarrow1+a+b+c=2\) ( 2 )
\(f\left(-1\right)=-2\Rightarrow-1+a-b+c=-2\) ( 3 )
Cộng vế với vế của (2) và (3) ta có: \(2.\left(a+c\right)=0\Rightarrow a+c=0\Rightarrow c=-a\) (4)
Thay \(a+c=0\) vào ( 2 ) ta có: \(1+b+0=2\Rightarrow b=1\)
Thay b = 1 vào ( 1 ) ta có: \(8+4a+2+c=0\Rightarrow4a+c=-10\) ( 5 )
Thay ( 4 ) vào ( 5 ) ta có: \(4a-a=-10\Rightarrow3a=-10\Rightarrow a=\dfrac{-10}{3}\)
\(\Rightarrow c=\dfrac{10}{3}\)
Vậy \(a=\dfrac{-10}{3};b=1;c=\dfrac{10}{3}\)