Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì số chẵn là số chia hết cho 2 nên ta có:
\(\overline{abc}=\overline{ab}+\overline{bc}+\overline{ca}+\overline{ac}+\overline{cb}+\overline{ba}\)
\(=10a+b+10b+c+10c+a+10a+c+10c+b+10b+a\)
\(=\left(10a+10a+a+a\right)+\left(10b+10b+b+b\right)+\left(10c+10c+c+c\right)\)
\(=22a+22b+22c\)
\(=22\left(a+b+c\right)\)
Vì \(22.\left(a+b+c\right)⋮2\) nên \(\overline{abc}\) là số chẵn ( đpcm )
Vì \(22.\left(a+b+c\right)⋮11\) nên \(\overline{abc}⋮11\) ( đpcm )
Ta có: \(\overline{abc}-\overline{cba}=495\)
\(\Rightarrow100a+10b+c-100c-10b-a=495\)
\(\Rightarrow99a-99c=495\)
\(\Rightarrow99.\left(a-c\right)=495\Rightarrow a-c=5\Rightarrow a=5+c\)
Mà \(b^2=\overline{ac}\Rightarrow b^2=10a+c\)
=> \(b^2=10.\left(5+c\right)+c=50+11c\)
Vì \(\overline{ac}\) có 2 chữ số nên:
b^2 < 100
Mà b^2 > 50
=> b^2 thuộc 64,81
b^2 = 64 => 11c = 14 (vô lí)
b^2 = 81 => 11c = 31 (vô lí)
Vậy không có abc thỏa mãn
a)theo cấu tạo số ta có:
abc = (a + b + c) x 2 x 11. (1)
từ (1) ta có: abc chia hết cho 11 và là số chẵn
b) khi a = 1, ta có:
1bc = (1 + b + c) x 22
100 + bc = 22 + 22 x b + 22 x c
78 = 12 x b + 21 x c (2)
Vậy 78 là số chẵn; 12 x b là số chẵn suy ra 21 x c cũng là số chẵn.Do (2) ta thấy c phải nhỏ hơn 4
Vậy c = 0 hoặc 2
-khi c = 0 thì 12 x b = 78 (không xác định được số b thỏa mãn yêu cầu 0)
-khi c = 2 thì 12 x b + 42 = 78
Vậy c = 2
Suy ra: 12 x b = 36 hay b = 3
Ta được số cần tìm là 132
Vậy abc = 132
Tìm a,b,c hay là tìm abc?
ca - ac = abc - ca
<=> 2ca = abc + ac
<=> 2( 10c + a ) = 100a + 10b+ c + 10a + c
<=>18c = 108a + 10b
<=> 9c = 54a + 5b
9c chia hết cho 9 => 54a + 5b cũng phải chia hết cho 9
Mà 54a chia hết cho 9 => 5b phải chia hết cho 9
=> \(b\in\left\{0;9\right\}\)
+, Nếu b = 0
=> c = 6a
Mà c và a khác 0 => a =1 ; c = 6
+, Nếu b = 9
=> c = 6a + 5
Vì \(a\ge1\)\(\Rightarrow c\ge11\)( loại )
Vậy a = 1; b = 0; c= 6