Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\frac{3a}{3c}=\frac{4b}{4d}=\frac{3a+4b}{3c+4d}=\frac{3a-4b}{3c-4d}.\)
\(\Rightarrow\frac{3a+4b}{3a-4b}=\frac{3c+4d}{3c-4d}\)
b) ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{5a}{5b}=\frac{2c}{2d}=\frac{4a}{4b}\)
Lại có: \(\frac{5a}{5b}=\frac{2c}{2d}=\frac{5a+2c}{5b+2d}\)
\(\Rightarrow\frac{4a}{4b}=\frac{5a+2c}{5b+2d}\Rightarrow\frac{5a+2c}{4a}=\frac{5b+2d}{4b}\)
c) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Lại có: \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\)
\(\Rightarrow\frac{\left(a+b^2\right)}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)
ta có: a=3b=4c=5d =>\(\frac{a}{60}=\frac{b}{20}=\frac{c}{15}=\frac{d}{12}\)
\(\Rightarrow\frac{ab}{1200}=\frac{c^2}{225}=\frac{d^2}{144}=\frac{ab-c^2-d^2}{1200-225-144}=\frac{831}{831}=1\)
\(\Rightarrow c^2=225\Rightarrow\orbr{\begin{cases}c=15\\c=-15\end{cases}}\)
-Nếu c=15 thay vào hệ ban đầu ta có:
\(\frac{b}{20}=\frac{c}{15}=\frac{15}{15}=1\Rightarrow b=20\Rightarrow b-c=5\)
-Nếu c=-15 => b= -20 => b-c= -5
Từ a= 3b =4c = 5d =>c =3/4b (1) ; d=3/5b
Thay a= 3b ; c =3/4b ; d= 3/5b vào ab-c^2-d^2=831
=>3b^2 - 9/16b^2 - 9/25b^2 = 831
=>831/400b^2 = 831
=>b^2=400
=>b=20 hoặc b=-20
Thay 2 giá trị của b vào (1)
=>c=15 hoặc c=-15
=>b-c=5 hoặc -5
\(a=3d=4c=5d\Rightarrow\frac{a}{60}=\frac{b}{20}=\frac{c}{15}=\frac{d}{12}\Leftrightarrow\frac{ab}{1200}=\frac{c^2}{255}=\frac{d^2}{144}=\frac{ab-c^2-d^2}{1200-255-144}\Leftrightarrow\frac{d^2}{144}=\frac{831}{831}\Leftrightarrow d=12\Rightarrow b=20;c=15\Rightarrow\)