Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.Giải:
Theo bài ra ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}\) và a + b + c + d = -42
Theo tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{d}{5}=\frac{a+b+c+d}{2+3+4+5}=\frac{-42}{14}=-3\)
+) \(\frac{a}{2}=-3\Rightarrow a=-6\)
+) \(\frac{b}{3}=-3\Rightarrow b=-9\)
+) \(\frac{c}{4}=-3\Rightarrow c=-12\)
+) \(\frac{d}{5}=-3\Rightarrow d=-15\)
Vậy a = -6
b = -9
c = -12
d = -15
Bài 3:
Ta có:\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\); \(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng tc dãy tỉ:
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{20}=\frac{a+b+c}{10+15+12}=\frac{-49}{37}\)
Với \(\frac{a}{10}=\frac{-49}{37}\Rightarrow a=10\cdot\frac{-49}{37}=\frac{-490}{37}\)
Với \(\frac{b}{15}=\frac{-49}{37}\Rightarrow b=15\cdot\frac{-49}{37}=\frac{-735}{37}\)
Với \(\frac{c}{12}=\frac{-49}{37}\Rightarrow c=12\cdot\frac{-49}{37}=\frac{-588}{37}\)
3a/6=b/3=2c/8=3a-b+2c/6-3+8=22/11=2
a=4
b=6
c=8
caau còn lại tương tự chúc bn hok tôys
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
\(\frac{a}{2}=\frac{b}{3}\Leftrightarrow\frac{a}{10}=\frac{b}{15}\)
\(\frac{b}{5}=\frac{c}{4}\Leftrightarrow\frac{b}{15}=\frac{c}{12}\)
\(\Leftrightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
Từ đó suy ra : a = -70 , y = -105 , c = -84
\(\text{Ta có: }\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)
\(\Rightarrow\frac{a}{2.5}=\frac{b}{3.5};\frac{b}{5.3}=\frac{c}{4.3}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15};\frac{b}{15}=\frac{c}{12}\)
\(\Rightarrow\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau ta có:}\)
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a-b+c}{10-15+12}=\frac{-49}{7}=-7\)
\(\cdot\frac{a}{10}=-7\Rightarrow a=-70\)
\(\cdot\frac{b}{15}=-7\Rightarrow b=-105\)
\(\cdot\frac{c}{12}=-7\Rightarrow c=-84\)
\(\text{Vậy a = -70 ; b = -105 và c = -84}\)
a) Theo đề, ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c =1,5
Theo t/c của dãy tỉ số bằng nhau:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{1,5}{10}=\frac{3}{20}\)
=>a=0,3
b=0,45
c=0,75
a) Vì a,b,c tỉ lệ với 2,3,5
=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{1,5}{10}=\frac{3}{20}\)
\(\frac{a}{2}=\frac{3}{20}=>a=\frac{3}{20}.2=\frac{3}{10}\)
\(\frac{b}{3}=\frac{3}{20}=>b=\frac{3}{20}.3=\frac{9}{20}\)
\(\frac{c}{5}=\frac{3}{20}=>c=\frac{3}{20}.5=\frac{3}{4}\)
b)
Áp dụng t/c dãy tỉ số bằng nhau :
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a}{2}=\frac{2b}{6}=\frac{3c}{12}=\frac{a+2b-3c}{2+6-12}=\frac{-20}{-4}=5\)
\(\frac{a}{2}=5=>a=5.2=10\)
\(\frac{b}{3}=5=>b=5.3=15\)
\(\frac{c}{4}=5=>c=5.4=20\)
c) \(\frac{a}{2}=\frac{b}{3},\frac{b}{5}=\frac{c}{4}\)
\(\frac{a}{10}=\frac{b}{15},\frac{b}{15}=\frac{c}{12}\)
\(=>\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}=\frac{a+b-c}{10+15-12}=\frac{-39}{13}=-3\)
\(\frac{a}{10}=-3=>-3.10=-30\)
\(\frac{b}{15}=-3=>-3.15=-45\)
\(\frac{c}{12}=-3=>-3.12=-36\)
a) Ta có \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\)
=> \(\frac{1}{2}a.\frac{1}{12}=\frac{3}{4}b.\frac{1}{12}=\frac{4}{3}c.\frac{1}{12}\)
=> \(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}\)
=> \(\frac{a}{24}=\frac{3b}{48}=\frac{c}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{24}=\frac{b}{16}=\frac{c}{9}=\frac{3b}{48}=\frac{3b-c}{48-9}=\frac{-3,9}{39}=-\frac{1}{10}\)
=> a = -2,4 ; b = -1,6 ; c = -0,9
b) Ta có \(\frac{3}{4}a=\frac{5}{6}b\)
=> \(\frac{3}{4}a.\frac{1}{15}=\frac{5}{6}b.\frac{1}{15}\)
=> \(\frac{a}{20}=\frac{b}{18}\)(1)
Lại có : \(5a=4c\Rightarrow\frac{a}{4}=\frac{c}{5}\Rightarrow\frac{a}{4}.\frac{1}{5}=\frac{c}{5}.\frac{1}{5}\Rightarrow\frac{a}{20}=\frac{c}{25}\)(2)
Từ (1) ; (2) => \(\frac{a}{20}=\frac{b}{18}=\frac{c}{25}\)
=> \(\frac{3a}{60}=\frac{b}{18}=\frac{2c}{50}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{a}{20}=\frac{b}{18}=\frac{c}{15}=\frac{3a}{60}=\frac{2c}{50}=\frac{2c+b-3a}{50+18-60}=-\frac{16}{8}=-2\)
=> a = -40 ; b = - 36 ; z = -30
a) \(\frac{1}{2}a=\frac{3}{4}b=\frac{4}{3}c\Rightarrow\frac{a}{\frac{2}{1}}=\frac{b}{\frac{4}{3}}=\frac{c}{\frac{3}{4}}\Rightarrow\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}\)và 3b - c = -3, 9
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{\frac{2}{1}}=\frac{3b}{4}=\frac{c}{\frac{3}{4}}=\frac{3b-c}{4-\frac{3}{4}}=\frac{-3,9}{\frac{13}{4}}=-\frac{6}{5}\)
\(\Rightarrow\hept{\begin{cases}a=-\frac{12}{5}\\b=-\frac{8}{5}\\c=-\frac{9}{10}\end{cases}}\)
b) \(\frac{3}{4}a=\frac{5}{6}b\Rightarrow\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}\)(1)
\(5a=4c\Rightarrow\frac{a}{\frac{1}{5}}=\frac{c}{\frac{1}{4}}\Rightarrow\frac{a}{\frac{4}{3}}=\frac{c}{\frac{5}{3}}\)(2)
Từ (1) và (2) => \(\frac{a}{\frac{4}{3}}=\frac{b}{\frac{6}{5}}=\frac{c}{\frac{5}{3}}\)và 2c + b - 3a = -16
\(\Rightarrow\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}\)và 2c + b - 3a = -16
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{3a}{4}=\frac{b}{\frac{6}{5}}=\frac{2c}{\frac{10}{3}}=\frac{2c+b-3a}{\frac{10}{3}+\frac{6}{5}-4}=\frac{-16}{\frac{8}{15}}=-30\)
\(\Rightarrow\hept{\begin{cases}a=-40\\b=-36\\c=-50\end{cases}}\)
Ta có: \(\hept{\begin{cases}\frac{a}{3}=\frac{b}{4}\\\frac{b}{2}=\frac{c}{5}\end{cases}\Rightarrow\hept{\begin{cases}\frac{a}{6}=\frac{b}{8}\\\frac{b}{8}=\frac{c}{20}\end{cases}\Rightarrow}\frac{a}{6}=\frac{b}{8}=\frac{c}{20}}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{a}{6}=\frac{b}{8}=\frac{c}{20}=\frac{a-c+b}{6-20+8}=\frac{3}{-6}=\frac{-1}{2}\)
\(\Rightarrow\hept{\begin{cases}a=\frac{-1}{2}.6=-3\\b=\frac{-1}{2}.8=-4\\c=\frac{-1}{2}.20=-10\end{cases}}\)
Vậy ...
Ta có\(\frac{b}{2}=\frac{c}{5}\)
\(\Rightarrow\frac{b}{2}\times\frac{1}{2}=\frac{c}{5}\times\frac{1}{2}\)
\(\Rightarrow\frac{b}{4}=\frac{c}{10}\)
Mà \(\frac{a}{3}=\frac{b}{4}\)
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{10}=\frac{a+b-c}{3+4-10}=\frac{3}{-3}=-1\)
\(\Rightarrow\hept{\begin{cases}a=-1\times3=-3\\b=-1\times4=-4\\c=-1\times10=-10\end{cases}}\)