Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)
\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)
\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)
\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)
\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)
Vậy \(a=-27;b=-44;c=-53\)
b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)
Vậy \(a=72;b=180;c=240\)
a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)
=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)
b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
=> a = 72, b=180, c=240
Từ đẳng thức \(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}\)
\(\Rightarrow\frac{a-1}{5}=\frac{2b-4}{6}=\frac{c-2}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}=\frac{2b-4}{6}=\frac{a-1+2b-4-c+2}{5+6-2}=\frac{\left(a+2b-c\right)-3}{9}\)
\(=\frac{6-3}{9}=\frac{1}{3}\)
\(\Rightarrow a=\frac{5.1}{3}+1=\frac{5}{3}+1=\frac{8}{3};\)
\(b=\frac{3.1}{3}+2=1+2=3;\)
\(c=\frac{2.1}{3}+2=\frac{2}{3}+2=\frac{8}{3}\)
Vậy \(a=\frac{8}{3};b=3;c=\frac{8}{3}\)
viết lại đề bài
=> \(\frac{a-1}{5}=\frac{2\left(b-2\right)}{6}=\frac{c-2}{2}\)
ÁP DỤNG TÍNH CHẤT DÃU TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{a-1}{5}=\frac{2b-4}{6}=\frac{c-2}{2}=\frac{a-1+2b-2-c-2}{5+6-2}=\frac{a+2b-c-1-2-2}{9}\)
=> \(\frac{6-1-2-2}{9}=\frac{1}{9}\)
+ \(\frac{a-1}{5}=\frac{1}{9}=>a=\frac{14}{9}\)
tương tự tìm b,c
* học tốt nha #
Áp dụng tích chất dãy tỉ số bằng nhau ta có :
\(\frac{a-1}{5}=\frac{b-2}{3}=\frac{c-2}{2}=\frac{2b-4}{6}=\frac{a-1+2b-4-c+2}{5+6-2}=\frac{a+2b-c-3}{9}=\frac{3}{9}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}a-1=\frac{1}{3}.5=\frac{5}{3}\Rightarrow a=\frac{8}{3}\\b-2=\frac{1}{3}.3=1\Rightarrow b=3\\c-2=\frac{1}{3}.2=\frac{2}{3}\Rightarrow c=\frac{8}{3}\end{cases}}\)
P/s : Lm đại :)) Sai bỏ qa :>
Đặt a-1/5=b-2/3=c-2/2=k
Suy ra:a=5k+1
b=3k+2
c=2k+2
Thay vào ta có:
5k+1+2(3k+2)-2k-2=6(đổi dấu đúng nhé)
(=)5k+1+6k+4-2k-2=6(=)9k+3=6(=)9k=9(=)k=1
Suy ra a=6,b=5,c=4.( cho mình nhé)
\(\frac{a}{2}\)=\(\frac{b}{3}\)\(\frac{c}{4}\)=\(\frac{a+2b-c}{2+6-4}\)=\(\frac{20}{4}\)=5
\(\frac{a}{2}\)= 5 suy ra a=2.5=10
\(\frac{b}{3}\)=5 suy ra b=3.5=15
\(\frac{c}{4}\)=5 suy ra c=4.5=20
vậy a=10,b=15,c=20
2
2x-\(\frac{2}{3}\)=\(\frac{1}{3}\)
2x=\(\frac{1}{3}\)+ \(\frac{2}{3}\)
2x=1
x=1:2
x=\(\frac{1}{2}\)
k cho mình nhé có cơ hội thì kết bạn luôn
Từ giả thuyết suy ra:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{38}=0\)(Tính chất dãy tỷ số bằng nhau)
\(\Leftrightarrow\hept{\begin{cases}\frac{3a-2b}{5}=0\\\frac{2c-5a}{3}=0\\\frac{5b-3c}{2}=0\end{cases}\Leftrightarrow}\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}}\Leftrightarrow\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}}\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{11}=-\frac{50}{11}\)
Tự làm tiếp nha........
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=\frac{0}{38}=0\)
=> \(\hept{\begin{cases}3a-2b=0\\2c-5a=0\\5b-3c=0\end{cases}}\)=> \(\hept{\begin{cases}3a=2b\\2c=5a\\5b=3c\end{cases}}\)=> \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\\\frac{b}{3}=\frac{c}{5}\end{cases}}\)=> \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{-50}{10}=-5\)
=> a = -5.2 = -10
b = -5.3 = -15
c = -5.5 = -25
Nếu đề đúng.
\(a^2+b^3-\sqrt{5^2}c=a+b^3-\frac{5}{3}c\)
<=> \(a+\frac{10}{3}c=a^2\)
Mặt khác:
\(a=\frac{3}{2}c\)=> \(a=\frac{\frac{10}{3}c}{\frac{20}{9}.}=\frac{a+\frac{10}{3}c}{1+\frac{20}{9}}=\frac{a^2}{\frac{29}{9}}\)
=> \(\frac{29}{9}a=a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{29}{9}\end{cases}}\)
Với a=0 => b=c =0
Với \(a=\frac{29}{9}\Rightarrow b=\frac{29}{18};c=\frac{58}{27}\)