K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

Thiếu 1 phương trình nha bạn, hệ phương trình 3 ẩn phải có 3 pt

10 tháng 5 2019

\(\hept{\begin{cases}a+b+c=6\\a^2+b^2+c^2=12\end{cases}}\Rightarrow\hept{\begin{cases}\left(a+b+c\right)^2=36\\3\left(a^2+b^2+c^2\right)=36\end{cases}}\)

\(\Rightarrow\left(a+b+c\right)^2=3\left(a^2+b^2+c^2\right)\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)

Vì a+b+c=6 và a=b=c nên a=b=c=2 (đpcm)

10 tháng 8 2016

a) Ta dùng hằng đẳng thức: \(\left(a-b\right)^2=\left(a+b\right)^2-4ab\)       (1)

Thay a+b=7 và ab=12 vào (1) ta được:

\(\left(a-b\right)^2=7^2-4.12=49-48=1\)

Vậy:.....

b) Ta dùng hằng đẳng thức: \(\left(a+b\right)^2=\left(a-b\right)^2+4ab\)     (2)

Thay a-b=6 và ab = 3 vào (2) ta được:

\(\left(a+b\right)^2=6^2+4.3=36+12=48\)

Vậy:....

c) Dùng hằng đẳng thức: \(a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)\)    (3)

Thay ab = 6 và a+b = -5 vào (3) ta được:

\(a^3+b^3=\left(-5\right)^3-3.6\left(-5\right)=-125-90=-215\)

Vậy......

10 tháng 3 2020

a2 + b2 + c2 = ab + bc + ca 

<=>  2a^2 + 2b^2 + 2c^2 = 2ab + 2bc + 2ca

<=>  2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0

<=> (a - b)^2 + (b - c)^2 + (c - a)^2 = 0

<=>  a - b = 0 và b - c = 0 và c - a = 0

<=>  a = b và b = c

<=>  a = b = c

b, a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0

<=> (a^2 - 2a + 1) + (b^2 + 4b + 4)  + (4c^2 - 4c + 1) = 0

<=> (a - 1)^2 + (b + 2)^2 + (2c - 1)^2 = 0

<=> a - 1 = 0 và b + 2 = 0 và 2c - 1 = 0 

<=> a = 1 và b = - 2 và c = 1/2

8 tháng 11 2017

2\

a3+4a2-7a-10

= a3-2a2+6a2-12a+5a-10

=a2(a-2) +6a(a-2) +5(a-2)

= (a-2)(a2+6a+5)

= (a-2)(a+1)(a+5)

4\

(a2+a)2+4(a2+a)-12

= (a2+a)2+4(a2+a)+4-16

= (a2+a+2)2-16

= (a2+a+6)(a2+a-2)

5/

(x2+x+1)(x2+x+2)-12

đặt x2+x+1=a

⇒ a(a+1)-12

= a2+a-12

= a2-3a+4a-12

= a(a-3)+4(a-3)

= (a-3)(a+4)

⇒ (x2+x-2)(x2+x+5)

6\

x8+x+1

= x8+x7+x6-x7-x6-x5+x5+x4+x3-x4-x3-x2+x2+x+1

= x6(x2+x+1) - x5(x2+x+1) +x3(x2+x+1)-x2(x2+x+1)+(x2+x+1)

= (x2+x+1)(x6-x5+x3+x2+1)

7\

x10+x5+1

= x10+x9+x8-x9-x8-x7+x7+x6+x5-x6-x5-x4+x5+x4+x3-x3-x2-x+x2+x+1

= x8(x2+x+1)-x7(x2+x+1)+x5(x2+x+1)-x4(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)

= (x2+x+1)(x8-x7+x5-x4+x3-x+1)