Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\frac{1}{3}:2x=-5-\frac{1}{4}\)
\(\frac{1}{3}:2x=\frac{-21}{4}\)
\(2x=\frac{1}{3}:\frac{-21}{4}\)
\(2x=\frac{-4}{63}\)
\(x=\frac{-4}{63}:2\)
\(x=\frac{-2}{63}\)
\(\)
\(\frac{1}{4}+\frac{1}{3}:2x=-5\)
\(\Rightarrow\frac{1}{3}:2x=-\frac{21}{4}\)
\(\Rightarrow2x=\frac{-4}{63}\)
\(\Rightarrow x=\frac{-2}{63}\)
\(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}}\)
\(\left(2x-5\right)\left(\frac{3}{2}x+9\right)\left(0,3x-12\right)=0\)
Th1 : \(2x-5=0\Rightarrow x=\frac{5}{2}\)
Th2 : \(\frac{3}{2}x+9=0\Rightarrow x=-6\)
Th3 : \(0,3x-12=0\Rightarrow x=\frac{12}{0,3}\)
\(\frac{1}{3}y+\frac{2}{5}\left(y+1\right)=0\)
\(\frac{1}{3}y+\frac{2}{5}y+\frac{2}{5}=0\)
\(y\left(\frac{1}{3}+\frac{2}{5}\right)=-\frac{2}{5}\)
\(y\left(\frac{1.5+2.3}{15}\right)=\frac{-2}{5}\)
\(\frac{11}{15}y=\frac{-2}{5}\)
\(y=\frac{-2}{5}\div\frac{11}{15}\)
\(y=\frac{-2}{5}.\frac{15}{11}\)
\(y=\frac{-6}{11}\)
\(\frac{-15}{12}y+\frac{3}{7}=\frac{6}{5}y-\frac{1}{2}\)
\(\frac{6}{5}y-\frac{1}{2}=\frac{-15}{12}y+\frac{3}{7}\)
\(\frac{1}{2}=\frac{6}{5}y+\frac{15}{12}y+\frac{3}{7}\)
\(\frac{1}{2}-\frac{3}{7}=\frac{6}{5}y+\frac{15}{12}y\)
\(\frac{1}{14}=y\left(\frac{6}{5}+\frac{15}{12}\right)\)
\(\frac{1}{14}=\frac{49}{20}y\)
\(y=\frac{1}{14}\div\frac{49}{20}\)
\(y=\frac{10}{343}\)
a) \(2\frac{1}{3}+\left(x-\frac{3}{2}\right)=\left(3-\frac{3}{2}\right)x\)
\(2\frac{1}{3}+x-\frac{3}{2}=3x-\frac{3}{2}x\)
\(2\frac{1}{3}-\frac{3}{2}=3x-\frac{3}{2}x-x\)
\(\frac{5}{6}=3x-\frac{3}{2}x-x\)
\(\frac{5}{6}=\left(3-\frac{3}{2}-1\right)x\)
\(\frac{5}{6}=\frac{1}{2}x\)
\(x=\frac{5}{6}:\frac{1}{2}\)
\(x=\frac{5}{3}\)
b) |3x-4|+|3y+5|=0
ĐK : \(\hept{\begin{cases}\left|3x-4\right|\ge0\\\left|3y+5\right|\ge0\end{cases}}\Leftrightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\)
Mà |3x-4|+|3y+5|=0 nên :
\(\Rightarrow\hept{\begin{cases}3x-4=0\\3y+5=0\end{cases}}\Rightarrow\hept{\begin{cases}3x=4\\3y=-5\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{-5}{3}\end{cases}}\)
Vậy x=4/3 ; y=-5/3
c) \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\)
ĐK : \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{1890}{1975}\right|\ge0\\\left|z-2004\right|\ge0\end{cases}}\Leftrightarrow\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|\ge0\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{1890}{1975}\right|+\left|z-2004\right|=0\) nên :
\(\Rightarrow\hept{\begin{cases}x+\frac{19}{5}=0\\y+\frac{1890}{1975}=0\\z-2004=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-\frac{19}{5}\\y=-\frac{1890}{1975}\\z=2004\end{cases}}\)
Vậy ...
+Vì \(\Delta ABC\)cân tại A
\(\Rightarrow\widehat{B}=\widehat{C}\)(Tính chất tam giác cân)
+ Xét \(\Delta ABC\)có:\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)(Định lý tổng 3 góc)
Mà\(\widehat{A}=56^0\)(GT); \(\widehat{B}=\widehat{C}\)(cmt)
\(\Rightarrow56^0+2\widehat{B}=180^0\)
\(\Leftrightarrow2\widehat{B}=124^0\)
\(\Leftrightarrow\widehat{B}=62^0\)
Mà\(\widehat{B}=\widehat{C}\left(cmt\right)\)
\(\Rightarrow\widehat{C}=62^0\)
Vậy\(\widehat{B}=62^0\); \(\widehat{C}=62^0\)
Soc Tong
Vì \(\Delta ABC\) cân tại A nên :
\(\widehat{B}\text{=}\widehat{C}\)
\(\Delta ABC\)có :
\(\widehat{A}\text{+}\widehat{B}\text{+}\widehat{C}\text{=}180^o\)( ĐL tổng 3 góc của một tam giác )
Hay \(56^o\text{+}\widehat{B}\text{+}\widehat{C}\text{=}180^o\)
\(\Leftrightarrow\widehat{B}\text{+}\widehat{C}\text{=}124^o\)
Mà \(\widehat{B}=\widehat{C}\)nên :
\(2\widehat{B}=124^o\)
\(\Leftrightarrow\widehat{B}=62^o\)
\(\Leftrightarrow\widehat{C}=62^o\)
Vậy \(\widehat{B}=\widehat{C}=24^o\)
Hok tốt ! KB nha.
1. Tìm x, biết :
a. ( x - \(\frac{3}{4}\)) \(^2\)= 0
=> x - \(\frac{3}{4}\)= 0
=> x = 0 + \(\frac{3}{4}\)
=> x = \(\frac{3}{4}\)
b. ( x + \(\frac{1}{2}\)) \(^2\)= \(\frac{9}{64}\)
=> ( x + \(\frac{1}{2}\)) \(^2\)= ( \(\frac{3}{8}\)) \(^2\)
=> x + \(\frac{1}{2}\)= \(\frac{3}{8}\)
=> x = \(\frac{3}{8}\)- \(\frac{1}{2}\)
=> x = \(\frac{-1}{8}\)
c. \(\frac{\left(-2\right)^x}{16}=-8\)
=> \(\frac{\left(-2\right)^x}{16}=\frac{-8}{1}=\frac{-128}{16}\)
=> ( -2)\(^x\)= -128
=> ( -2 ) \(^x\)= ( -2) \(^7\)
=> x = 7
Ix+\(\frac{1}{5}\)I=\(\frac{1}{36}\)
\(\hept{\begin{cases}x+\frac{1}{5}=\frac{1}{36}\\x+\frac{1}{5}=-\frac{1}{36}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{36}+\frac{1}{5}\\x=-\frac{1}{36}+\frac{1}{5}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{41}{180}\\x=\frac{31}{180}\end{cases}}\)
a) \(\frac{2}{3a}-\frac{3}{a}=\frac{2}{3a}-\frac{9}{3a}=\frac{-7}{3a}=\frac{7}{15}\Leftrightarrow-3a=15\Leftrightarrow a=-5\)
b)\(2x^3-1=15\Leftrightarrow2x^3=16\Leftrightarrow x^3=8\Leftrightarrow x=2\)
\(\Rightarrow\frac{2+16}{9}=\frac{y-15}{16}=2\Leftrightarrow y-15=32\Leftrightarrow y=47\)
c) \(\left|x\right|=3\Rightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\) rồi xét 2 trường hợp để tính A nhé :)
Bài 1: ĐK của a: \(a\ne0\)
Quy đồng VT ta có: \(\frac{2a-9a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow\frac{-7a}{3a^2}=\frac{7}{15}\)
\(\Leftrightarrow-7a.15=3a^2.7\)
\(\Leftrightarrow-105a=21a^2\)
\(\Leftrightarrow-105a-21a^2=0\)
\(\Leftrightarrow a\left(-105-21a\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}a=0\left(l\right)\\-105-21a=0\end{cases}\Leftrightarrow a=-5\left(n\right)}\)
Vậy:..
Ta có :\(1:0,abc=a+b+c\)
\(\Rightarrow1:\dfrac{abc}{1000}=a+b+c\)
\(\Rightarrow1000:abc=a+b+c\)
\(\Rightarrow abc\times\left(a+b+c\right)=1000\)
Mà \(1000=500\times2=100\times10=250\times4=200\times5=125\times8\)
\(\Rightarrow abc\times\left(a+b+c\right)=125\times8=125\times\left(1+2+5\right)\)
Vậy abc =125