K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2015

ab= 72

14 tháng 11 2016

a,32040;32340;32940

14 tháng 11 2016

vì 32a4b chia hết  cho cả 2 và 5 nên có tận cùng là 0.ta đc 32a40.

vì 32a40 chia hết cho 3 nên(3+2+a+4+0)chia hết cho 3

                                  hay(9+a)chia hết cho 3

vì a là 1 cs nên a thuộc ( 0,3,6,9)

ta đc các số 32040,32340,32640,32940

18 tháng 12 2020
Cả cách giải nhé =]
27 tháng 1 2016

72

22 tháng 2 2017

Đáp số: 72.

Đúng 100% luôn!

Ai tk cho mình mình tk lại.

13 tháng 7 2016

+) Nếu a2;b2;c2 không chia hết cho 3

=> a2;b2;c2  chia 3 dều dư 1

=> a2=3k +1

    b2=3m+1

    c2=3n+1 

=> a2+b2=3k+1+3m+1=3(k+m)+2   

Mà c2 chia 3 dư 1

=> Trong 2 số  a;b có ít nhất 1 số chia hết cho 3 (1)

+) Nếu  a2;b2;c2 không chia hết cho 4

=>  a2;b2;c2 chia 8 dư 1 hoặc 4

=>  a2+b chia 8 dư 0;2;hoặc5

Mà c2 chia 5 dư 1;4

=> Vô lí

=> trong  a và b có ít nhất 1 số chia hết cho 4 (2)

Mà (3;4)=1  (3)

Từ (1);(2) và (3)

=> a.b chia hết cho 3x4=12

=> Đpcm

Chúc em học tốt nhé

haha

 

13 tháng 7 2016

Bài làm có sử dụng các bổ đề: số chính phương chia 3 dư 0 hoặc 1. Số chính phương chia 5 dư 0, 1 hoặc 4. Số chính phương chia hết cho p (p là số nguyên tố) thì phải chia hết cho p². 
~~~~~~~~~ 
a) - Nếu a hoặc b chia hết cho 3 => abc chia hết cho 3. 
- Nếu a không chia hết cho 3 và b không chia hết cho 3 => a² chia 3 dư 1, b² chia 3 dư 1 => c² chia 3 dư 2 (vô lí) 
Vậy trường hợp a không chia hết cho 3 và b không chia hết cho 3 không xảy ra => abc chia hết cho 3 (*) 
b) - Nếu a, b cùng chẵn => ab chia hết cho 4 => abc chia hết cho 4. 
- Nếu a, b cùng lẻ => a = 2t + 1; b = 2k + 1 (t; k thuộc N) 
=> a² + b² = (2t +1)² + (2k + 1)² = 4t² + 4t + 4k² + 4k + 2 = 4(t² + t + k² + k) + 2 => a² + b² chia hết cho 2 nhưng không chia hết cho 4 => c² chia hết cho 2 nhưng không chia hết cho 4 (vô lí) 
Vậy trường hợp a, b cùng lẻ không xảy ra. 
- Nếu a lẻ, b chẵn => c lẻ. Đặt a = 2m + 1; b = 2n; c= 2p + 1. (m, n, p thuộc N). 
=> a² + b² = c² 
<=> (2m + 1)² + (2n)² = (2p + 1)² 
<=> 4m² + 4m + 1 + 4n² = 4p² + 4p + 1 
<=> n² = p² + p - m² - m 
<=> n² = p(p + 1) - m(m + 1). 
p(p + 1) là tích 2 số tự nhiên liên tiếp => p(p + 1) chia hết cho 2. Cmtt => m(m + 1) chia hết cho 2 => p(p + 1) - m(m + 1) chia hết cho 2 => n² chia hết cho 2 => n chia hết cho 2 => b chia hết cho 4 => abc chia hết cho 4. 
- Nếu a chẵn, b lẻ. Cmtt => a chia hết cho 4 => abc chia hết cho 4. 
Vậy abc chia hết cho 4 (**) 
c) - Nếu a hoặc b chia hết cho 5 => abc chia hết cho 5. 
- Nếu a không chia hết cho 5 và b không chia hết cho 5 => a² chia 5 dư 1 hoặc 4; b² chia 5 dư 1 hoặc 4. 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 1 => c² chia 5 dư 2 (vô lí) 
+ Nếu a² chi 5 dư 1, và b² chia 5 dư 4=> c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 1 => c² chia 5 dư 0 => c chia hết cho 5. 
+ Nếu a² chi 5 dư 4 và b² chia 5 dư 4 => c² chia 5 dư 3 (vô lí). 
Vậy ta luôn tìm được một giá trị của a, b, c thỏa mãn abc chia hết cho 5. (***) 
Từ (*), (**), (***), mà 3, 4, 5 đôi một nguyên tố cùng nhau => abc chia hết cho 3.4.5 hay abc chia hết cho 60. (đpcm). 
~~~~~~