\(\dfrac{ax^2+bx+1}{x^2+bx+a}=1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2016

với chứ không phải vưới

9 tháng 4 2017

a) y' = 2x - = 2x - .

b) y' = = .

c) y' = = = = .

d) y' = = = = .

31 tháng 1 2021

\(y'=\dfrac{\left(3x^2+2x+1\right)'\left(x-2\right)-\left(x-2\right)'\left(3x^2+2x+1\right)}{\left(x-2\right)^2}\)

\(y'=\dfrac{\left(6x+2\right)\left(x-2\right)-3x^2-2x-1}{\left(x-2\right)^2}\)

\(y'=\dfrac{6x^2-10x-4-3x^2-2x-1}{\left(x-2\right)^2}=\dfrac{3x^2-12x-5}{\left(x-2\right)^2}=\dfrac{12x^2-48x-20}{\left(2x-4\right)^2}\)

\(\Rightarrow a^2-b^2+c^2=12^2-48^2+20^2=...\)

14 tháng 4 2017

\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).