\(a,b\) là các số tự nhiên khác 0 thỏa mãn \(\frac{4}{9}< \fr...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tỉ số của a và b là:

2 : 5 = \(\frac{2}{5}\)

Số a là:

3 : ( 5 - 2 ) x 2 = 2

Số b là:

3 + 2 = 5

Vậy \(\frac{a}{b}\)là: \(\frac{2}{5}\)

27 tháng 2 2017

Tỉ số của a và b là :

       2 : 5 = 2/5

Số a là : 

       3 : ( 5 - 2 ) x 2 = 2

Số b là : 

       3 + 2 = 5 

Vậy a/b = 2/5

19 tháng 5 2015

Câu2:  
Q = \(\frac{3}{3}-\frac{3}{5}+\frac{3}{5}-\frac{3}{7}+...+\frac{3}{47}-\frac{3}{49}\)

    = \(\frac{3}{3}-\frac{3}{49}=\frac{46}{49}\)

3 tháng 4 2017

\(\hept{\begin{cases}\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\\8a-9b=31\end{cases}}\)

\(=>\hept{\begin{cases}17a>11b\\29a< 23b\end{cases}}\)

\(=>8a>5\frac{3}{17}b\)

\(-11\frac{8}{23}a< -9b\)

\(=>8a-11\frac{8}{23}a< 8a-9b=31< 8a+8a\)

\(=>-3\frac{8}{23}a< 31< 16a\)

\(=>0< a< 0,5\)

Vậy ko có số tự nhiên a,b nào thỏa mãn đề bài

14 tháng 4 2017

hôm nay mình thi, mình tìm ra là a=41; b=50, bn mik ra là a=17; b=23. Cả 2 đều đúng sao ý

Mình có bài toán hay muốn chia sẻ :1 a Tìm số tự nhiên có hai chữ số sao cho tỉ số giữa số đó với tổng các chữ số của nó là lớn nhất  , nhỏ nhất .   b Tìm số tự nhiên có ba chữ số sao cho tỉ số giữa số đó với tổng các chữ số của nó là lớn nhất . nhỏ nhất .                                                                     Bài giải   a Ta gọi số có hai...
Đọc tiếp

Mình có bài toán hay muốn chia sẻ :

1 a Tìm số tự nhiên có hai chữ số sao cho tỉ số giữa số đó với tổng các chữ số của nó là lớn nhất  , nhỏ nhất .

   b Tìm số tự nhiên có ba chữ số sao cho tỉ số giữa số đó với tổng các chữ số của nó là lớn nhất . nhỏ nhất .

                                                                     Bài giải   

a Ta gọi số có hai chữ số là ab (a , b E N , 0 < a ,b< hoặc = 9  )

Ta có \(\frac{ab}{a+b}\) = \(\frac{10a+b}{a+b}\) = \(\frac{10a\left(a+b\right)-9b}{a+b}\) = 10 - \(\frac{9b}{a+b}\)< hoặc = 10

Dấu = sảy ra khi b = 0 , a tùy ý

Vậy số ab cần tìm để \(\frac{ab}{a+b}\) lớn nhất là a0 với a là chữ số khác 0

Mặt khác \(\frac{ab}{a+b}\) = \(\frac{10a+b}{a+b}\) = \(\frac{100a+10b}{10\left(a+b\right)}\) 

                              =\(\frac{19\left(a+b\right)+81a-9b}{10\left(a+b\right)}\) = \(\frac{19}{10}\) + \(\frac{9\left(9a-b\right)}{10\left(a+b\right)}\) > hoặc = \(\frac{19}{10}\) 

(vì a > hoặc = 1 , b < hoặc = 9)

Dấu = xảy ra khi a = 1 và b = 9

Vậy số ab cần tìm để \(\frac{ab}{a+b}\) nhỏ nhất bằng 19

b Gọi số có ba chữ số là abc

(a,b,c E N,0 < a < hoặc = 9 , 0 < hoặc = b  < hoặc = 9 , 0 < hoặc = c < hoặc = 9)

Ta có :\(\frac{abc}{a+b+c}\) = \(\frac{100a+10b+c}{a+b+c}\) = \(\frac{10\left(a+b+c\right)-90b-99b}{a+a+c}\) 

                                 = 100 - \(\frac{90b+99b}{a+b+c}\) < hoặc = 100

Dấu = xảy ra khi b = c = 0 

Mặt khác :\(\frac{abc}{a+b+c}\) = \(\frac{100a+10b+c}{a+b+c}\)\(\frac{1900a+190b+19c}{19\left(a+b+c\right)}\)

                                      = \(\frac{199\left(a+b+c\right)+1701a-9b-180c}{19\left(a+b+c\right)}\)

                                      =\(\frac{199}{19}\) + \(\frac{1701-9b-180c}{19\left(a+b+c\right)}\) > hoặc = \(\frac{199}{19}\)

(vì a > hoặc= 1 , b,c < hoặc = 9)

Dấu = xảy ra khi a = 1 ,b = 9 , c = 9

Các bạn xem mình làm đúng chưa nha

1
24 tháng 4 2017

Mấy bài này lp 6 mà mk hok chưa bao h thấy, công nhận là hay đó bn, có điều mk đọc chẳng hỉu, hihi,hogogogbobo